Skip to main content
Log in

Dual-source CT coronary imaging in heart transplant recipients: image quality and optimal reconstruction interval

  • Cardiac
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

The image quality and optimal reconstruction interval for coronary arteries in heart transplant recipients undergoing non-invasive dual-source computed tomography (DSCT) coronary angiography was evaluated. Twenty consecutive heart transplant recipients who underwent DSCT coronary angiography were included (19 male, one female; mean age 63.1 ± 10.7 years). Data sets were reconstructed in 5% steps from 30% to 80% of the R-R interval. Two blinded independent observers assessed the image quality of each coronary segments using a five-point scale (from 0 = not evaluative to 4 = excellent quality). A total of 289 coronary segments in 20 heart transplant recipients were evaluated. Mean heart rate during the scan was 89.1 ± 10.4 bpm. At the best reconstruction interval, diagnostic image quality (score ≥2) was obtained in 93.4% of the coronary segments (270/289) with a mean image quality score of 3.04 ± 0.63. Systolic reconstruction intervals provided better image quality scores than diastolic reconstruction intervals (overall mean quality scores obtained with the systolic and diastolic reconstructions 3.03 ± 1.06 and 2.73 ± 1.11, respectively; P < 0.001). Different systolic reconstruction intervals (35%, 40%, 45% of RR interval) did not yield to significant differences in image quality scores for the coronary segments (P = 0.74). Reconstructions obtained at the systolic phase of the cardiac cycle allowed excellent diagnostic image quality coronary angiograms in heart transplant recipients undergoing DSCT coronary angiography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Taylor DO, Edwards LB, Boucek MM, Trulock EP, Keck BM, Hertz MI (2004) The Registry of the International Society for Heart and Lung Transplantation: twenty-first official adult heart transplant report–2004. J Heart Lung Transplan 23:796–803

    Article  Google Scholar 

  2. Tsutsui H, Ziada KM, Schoenhagen P, Iyisoy A, Magyar WA, Crowe TD et al (2001) Lumen loss in transplant coronary artery disease is a biphasic process involving early intimal thickening and late constrictive remodeling: results from a 5-year serial intravascular ultrasound study. Circulation 104:653–657

    Article  PubMed  CAS  Google Scholar 

  3. St Goar FG, Pinto FJ, Alderman EL, Valantine HA, Schroeder JS, Gao SZ et al (1992) Intracoronary ultrasound in cardiac transplant recipients. In vivo evidence of “angiographically silent” intimal thickening. Circulation 85:979–987

    PubMed  CAS  Google Scholar 

  4. Bashore TM, Bates ER, Berger PB, Clark DA, Cusma JT, Dehmer GJ et al (2001) American College of Cardiology/Society for Cardiac Angiography and Interventions Clinical Expert Consensus Document on cardiac catheterization laboratory standards. A report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J Am Coll Cardiol 37:2170–2214

    Article  PubMed  CAS  Google Scholar 

  5. Leschka S, Alkadhi H, Plass A, Desbiolles L, Grunenfelder J, Marincek B et al (2005) Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur Heart J 26:1482–1487

    Article  PubMed  Google Scholar 

  6. Raff GL, Gallagher MJ, O’Neill WW, Goldstein JA (2005) Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol 46:552–557

    Article  PubMed  Google Scholar 

  7. Wintersperger BJ, Nikolaou K, von Ziegler F, Johnson T, Rist C, Leber A et al (2006) Image quality, motion artifacts, and reconstruction timing of 64-slice coronary computed tomography angiography with 0.33-second rotation speed. Invest Radiol 41:436–442

    Article  PubMed  Google Scholar 

  8. Leber AW, Knez A, Becker A, Becker C, von Ziegler F, Nikolaou K et al (2004) Accuracy of multidetector spiral computed tomography in identifying and differentiating the composition of coronary atherosclerotic plaques: a comparative study with intracoronary ultrasound. J Am Coll Cardiol 43:1241–1247

    Article  PubMed  Google Scholar 

  9. Achenbach S, Moselewski F, Ropers D, Ferencik M, Hoffmann U, MacNeill B et al (2004) Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced, submillimeter multidetector spiral computed tomography: a segment-based comparison with intravascular ultrasound. Circulation 109:14–17

    Article  PubMed  Google Scholar 

  10. Nikolaou K, Knez A, Rist C, Wintersperger BJ, Leber A, Johnson T et al (2006) Accuracy of 64-MDCT in the diagnosis of ischemic heart disease. AJR Am J Roentgenol 187:111–117

    Article  PubMed  Google Scholar 

  11. Sigurdsson G, Carrascosa P, Yamani MH, Greenberg NL, Perrone S, Lev G et al (2006) Detection of transplant coronary artery disease using multidetector computed tomography with adaptative multisegment reconstruction. J Am Coll Cardiol 48:772–778

    Article  PubMed  Google Scholar 

  12. Romeo G, Houyel L, Angel CY, Brenot P, Riou JY, Paul JF (2005) Coronary stenosis detection by 16-slice computed tomography in heart transplant patients: comparison with conventional angiography and impact on clinical management. J Am Coll Cardiol 45:1826–1831

    Article  PubMed  Google Scholar 

  13. Gregory SA, Ferencik M, Achenbach S, Yeh RW, Hoffmann U, Inglessis I et al (2006) Comparison of sixty-four-slice multidetector computed tomographic coronary angiography to coronary angiography with intravascular ultrasound for the detection of transplant vasculopathy. Am J Cardiol 98:877–884

    Article  PubMed  Google Scholar 

  14. Leber AW, Knez A, von Ziegler F, Becker A, Nikolaou K, Paul S et al (2005) Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography: a comparative study with quantitative coronary angiography and intravascular ultrasound. J Am Coll Cardiol 46:147–154

    Article  PubMed  Google Scholar 

  15. Ferencik M, Gregory SA, Butler J, Achenbach S, Yeh RW, Hoffmann U et al (2007) Analysis of cardiac dimensions, mass and function in heart transplant recipients using 64-slice multi-detector computed tomography. J Heart Lung Transplant 26:478–484

    Article  PubMed  Google Scholar 

  16. Flohr TG, McCollough CH, Bruder H, Petersilka M, Gruber K, Suss C et al (2006) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16:256–268

    Article  PubMed  Google Scholar 

  17. Achenbach S, Ropers D, Kuettner A, Flohr T, Ohnesorge B, Bruder H et al (2006) Contrast-enhanced coronary artery visualization by dual-source computed tomography–initial experience. Eur J Radiol 57:331–335

    Article  PubMed  Google Scholar 

  18. Johnson TR, Nikolaou K, Wintersperger BJ, Leber AW, von Ziegler F, Rist C et al (2006) Dual-source CT cardiac imaging: initial experience. Eur Radiol 16:1409–1415

    Article  PubMed  Google Scholar 

  19. Leschka S, Scheffel H, Desbiolles L, Plass A, Gaemperli O, Valenta I et al (2007) Image quality and reconstruction intervals of dual-source CT coronary angiography: recommendations for ECG-pulsing windowing. Invest Radiol 42:543–549

    Article  PubMed  Google Scholar 

  20. Matt D, Scheffel H, Leschka S, Flohr TG, Marincek B, Kaufmann PA et al (2007) Dual-source CT coronary angiography: image quality, mean heart rate, and heart rate variability. AJR Am J Roentgenol 189:567–573

    Article  PubMed  Google Scholar 

  21. Flohr TG, Stierstorfer K, Ulzheimer S, Bruder H, Primak AN, McCollough CH (2005) Image reconstruction and image quality evaluation for a 64-slice CT scanner with z-flying focal spot. Med Phys 32:2536–2547

    Article  PubMed  CAS  Google Scholar 

  22. Bae KT, Hong C, Takahashi N, Gutierrez F, Sharkey AM, Hirsch R et al (2004) Multi-detector row computed tomographic angiography in pediatric heart transplant recipients: Initial observations. Transplantation 77:599–602

    Article  PubMed  Google Scholar 

  23. Austen WG, Edwards JE, Frye RL, Gensini GG, Gott VL, Griffith LS et al (1975) A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association. Circulation 51(4 Suppl):5–40

    PubMed  CAS  Google Scholar 

  24. Leschka S, Wildermuth S, Boehm T, Desbiolles L, Husmann L, Plass A et al (2006) Noninvasive coronary angiography with 64-section CT: effect of average heart rate and heart rate variability on image quality. Radiology 241:378–385

    Article  PubMed  Google Scholar 

  25. Sanz J, Rius T, Kuschnir P, Fuster V, Goldberg J, Ye XY et al (2005) The importance of end-systole for optimal reconstruction protocol of coronary angiography with 16-slice multidetector computed tomography. Invest Radiol 40:155–163

    Article  PubMed  Google Scholar 

  26. Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20:37–46

    Article  Google Scholar 

  27. Hong C, Becker CR, Huber A, Schoepf UJ, Ohnesorge B, Knez A et al (2001) ECG-gated reconstructed multi-detector row CT coronary angiography: effect of varying trigger delay on image quality. Radiology 220:712–717

    Article  PubMed  CAS  Google Scholar 

  28. Achenbach S, Giesler T, Ropers D, Ulzheimer S, Anders K, Wenkel E et al (2003) Comparison of image quality in contrast-enhanced coronary-artery visualization by electron beam tomography and retrospectively electrocardiogram-gated multislice spiral computed tomography. Invest Radiol 38:119–128

    Article  PubMed  Google Scholar 

  29. Achenbach S, Ropers D, Holle J, Muschiol G, Daniel WG, Moshage W (2000) In-plane coronary arterial motion velocity: measurement with electron-beam CT. Radiology 216:457–463

    PubMed  CAS  Google Scholar 

  30. Ropers D, Baum U, Pohle K, Anders K, Ulzheimer S, Ohnesorge B et al (2003) Detection of coronary artery stenoses with thin-slice multi-detector row spiral computed tomography and multiplanar reconstruction. Circulation 107:664–666

    Article  PubMed  Google Scholar 

  31. Kuettner A, Beck T, Drosch T, Kettering K, Heuschmid M, Burgstahler C et al (2005) Diagnostic accuracy of noninvasive coronary imaging using 16-detector slice spiral computed tomography with 188 ms temporal resolution. J Am Coll Cardiol 45:123–127

    Article  PubMed  Google Scholar 

  32. Mollet NR, Cademartiri F, Krestin GP, McFadden EP, Arampatzis CA, Serruys PW et al (2005) Improved diagnostic accuracy with 16-row multi-slice computed tomography coronary angiography. J Am Coll Cardiol 45:128–132

    Article  PubMed  Google Scholar 

  33. Ferencik M, Nomura CH, Maurovich-Horvat P, Hoffmann U, Pena AJ, Cury RC et al (2006) Quantitative parameters of image quality in 64-slice computed tomography angiography of the coronary arteries. Eur J Radiol 57:373–379

    Article  PubMed  Google Scholar 

  34. Herzog C, Arning-Erb M, Zangos S, Eichler K, Hammerstingl R, Dogan S et al (2006) Multi-detector row CT coronary angiography: influence of reconstruction technique and heart rate on image quality. Radiology 238:75–86

    Article  PubMed  Google Scholar 

  35. Hoffmann MH, Shi H, Manzke R, Schmid FT, De Vries L, Grass M et al (2005) Noninvasive coronary angiography with 16-detector row CT: effect of heart rate. Radiology 234:86–97

    Article  PubMed  Google Scholar 

  36. Herzog C, Abolmaali N, Balzer JO, Baunach S, Ackermann H, Dogan S et al (2002) Heart-rate-adapted image reconstruction in multidetector-row cardiac CT: influence of physiological and technical prerequisite on image quality. Eur Radiol 12:2670–2678

    PubMed  Google Scholar 

  37. Bley TA, Ghanem NA, Foell D, Uhl M, Geibel A, Bode C et al (2005) Computed tomography coronary angiography with 370-millisecond gantry rotation time: evaluation of the best image reconstruction interval. J Comput Assist Tomogr 29:1–5

    Article  PubMed  Google Scholar 

  38. Seifarth H, Wienbeck S, Pusken M, Juergens KU, Maintz D, Vahlhaus C et al (2007) Optimal systolic and diastolic reconstruction windows for coronary CT angiography using dual-source CT. AJR Am J Roentgenol 189:1317–1323

    Article  PubMed  Google Scholar 

  39. Lu B, Mao SS, Zhuang N, Bakhsheshi H, Yamamoto H, Takasu J et al (2001) Coronary artery motion during the cardiac cycle and optimal ECG triggering for coronary artery imaging. Invest Radiol 36:250–256

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gorka Bastarrika.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bastarrika, G., De Cecco, C.N., Arraiza, M. et al. Dual-source CT coronary imaging in heart transplant recipients: image quality and optimal reconstruction interval. Eur Radiol 18, 1791–1799 (2008). https://doi.org/10.1007/s00330-008-0957-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-008-0957-2

Keywords

Navigation