Skip to main content

Advertisement

Log in

Differences in perfusion parameters between upper and lower lumbar vertebral segments with dynamic contrast-enhanced MRI (DCE MRI)

  • Musculoskeletal
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

To investigate the influence of age, sex and spinal level on perfusion parameters of normal lumbar bone marrow with dynamic contrast-enhanced MRI (DCE MRI). Sixty-seven subjects referred for evaluation of low back pain or sciatica underwent DCE MRI of the lumbar spine. After subtraction of dynamic images, a region of interest (ROI) was placed on each lumbar vertebral body of all subjects, and time intensity curves were generated. Consequently, perfusion parameters were calculated. Statistical analysis was performed to search for perfusion differences among lumbar vertebrae and in relation to age and sex. Upper (L1, L2) and lower (L3, L4, L5) vertebrae showed significant differences in perfusion parameters (p<0.05). Vertebrae of subjects younger than 50 years showed significantly higher perfusion compared to vertebrae of older ones (p<0.05). Vertebrae of females demonstrated significantly increased perfusion compared to those of males of corresponding age (p<0.05). All perfusion parameters, except for washout (WOUT), showed a mild linear correlation with age. Time to maximum slope (TMSP) and time to peak (TTPK) showed the same correlation with sex (0.22<r<0.32, p<0.05). Our results indicate increased perfusion of the upper compared to the lower lumbar spine, of younger compared to older subjects and of females compared to males.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Weinreb JC (1990) MR imaging of bone marrow: a map could help. Radiology 177:23–24

    PubMed  CAS  Google Scholar 

  2. Vande Berg BC, Malghem J, Lecouvet FE, Maldague B (1998) Magnetic resonance imaging of normal bone marrow. Eur Radiol 8:1327–1334

    Article  PubMed  CAS  Google Scholar 

  3. Ricci C, Cova M, Kang YS et al (1990) Normal age-related patterns of cellular and fatty bone marrow distribution in the axial skeleton: MR imaging study. Radiology 177:83–88

    PubMed  CAS  Google Scholar 

  4. Duda SH, Laniado M, Schick F et al (1995) Normal bone marrow in the sacrum of young adults: differences between the sexes seen on chemical shift imaging. AJR Am J Roentgenol 164:935–940

    PubMed  CAS  Google Scholar 

  5. Dooms GC, Fisher MR, Hricak H, Richardson M, Crooks LE, Genant HK (1985) Bone marrow imaging: magnetic resonance studies related to age and sex. Radiology 155:429–432

    PubMed  CAS  Google Scholar 

  6. Vogler JB, Murphy WA (1988) Bone marrow imaging. Radiology 168:679–693

    PubMed  Google Scholar 

  7. Vande Berg BC, Lecouvet FE, Michaux L, Ferrant A, Maldague B, Malghem J (1998) Magnetic resonance imaging of the bone marrow in hematologic malignancies. Eur Radiol 8:1335–1344

    Article  PubMed  CAS  Google Scholar 

  8. Moulopoulos LA, Varma DGK, Dimopoulos MA et al (1992) Multiple myeloma: spinal MR imaging in patients with untreated newly diagnosed disease. Radiology 185:833–840

    PubMed  CAS  Google Scholar 

  9. Rahmouni A, Divine M, Mathieu D et al (1993) Detection of multiple myeloma involving the spine: efficacy of fat-suppression and contrast enhanced MR imaging. AJR Am J Roentgenol 160:1049–1052

    PubMed  CAS  Google Scholar 

  10. Baur A, Stäbler A, Bartl R, Lamerz R, Scheidler J, Reiser M (1997) MRI gadolinium enhancement of bone marrow: age related changes in normals and in diffuse neoplastic infiltration. Skeletal Radiology 26:414–418

    Article  PubMed  CAS  Google Scholar 

  11. Ishijima H, Ishizaka H, Horikoshi H, Sakurai M (1996) Water fraction of lumbar vertebral bone marrow estimated from chemical shift misregistration on MR imaging: normal variations with age and sex. AJR 167:355–358

    PubMed  CAS  Google Scholar 

  12. Chen WT, Shih TTF, Chen RC et al (2001) Vertebral bone marrow perfusion evaluated with dynamic contrast-enhanced MR imaging; significance of aging and sex. Radiology 220:213–218

    PubMed  CAS  Google Scholar 

  13. Montazel JL, Divine M, Lepage E, Kobeiter H, Breil S, Rahmouni A (2003) Normal spinal bone marrow in adults: dynamic gadolinium-enhanced MR imaging. Radiology 229:703–709

    Article  PubMed  Google Scholar 

  14. Marquardt DW (1963) An algorithm for least squares estimation of non-linear parameters. J Soc Indust Appl Math 11:431–441

    Article  Google Scholar 

  15. Moulopoulos LA, Maris TG, Papanikolaou N, Panagi G, Vlahos L, Dimopoulos MA (2003) Detection of malignant bone marrow involvement with dynamic contrast magnetic resonance imaging. Annals of Oncology 14:152–158

    Article  PubMed  CAS  Google Scholar 

  16. Fleckenstein JL (2005) What’s new about osteoporosis. Radiology 236(3):745–746

    Article  PubMed  Google Scholar 

  17. Rahmouni AL, Montazel JL, Divine M et al (2003) Bone marrow with diffuse tumor infiltration in patients with lymphoproliferative diseases: dynamic gadolinium-enhanced MR imaging. Radiology 229:710–717

    Article  PubMed  Google Scholar 

  18. Bollow M, Knauf W, Korfel A et al (1996) Initial experience with dynamic MR imaging in evaluation of normal bone marrow versus malignant bone marrow infiltrations in humans. J Magn Reson Imaging 7:241–250

    Article  Google Scholar 

  19. Hawighorst H, Libicher M, Knopp MV et al (1999) Evaluation of angiogenesis and perfusion of bone marrow lesions: role of semiquantitative and quantitative dynamic MRI. J Magn Reson Imaging 10:286–294

    Article  PubMed  CAS  Google Scholar 

  20. Taylor JS, Tofts PS, Phil D et al (1999) MR imaging of tumor microcirculation: promise for the new millenium. J Magn Reson Imaging 10:903–904

    Article  PubMed  CAS  Google Scholar 

  21. van der Woude HJ, Verstraete KL, Hogendoorn P, Taminiau A, Hermans J, Bloem J (1998) Musculoskeletal tumors: does fast dynamic contrast-enhanced subtraction MR imaging contribute to the characterization. Radiology 208:821–828

    PubMed  Google Scholar 

  22. Verstraete KL, De Deene Y, Roels H, Dierick A, Uyttendale D, Kunnen M (1994) Benign and malignant musculoskeletal lesions: Dynamic contrast-enhancedMR imaging-Parametric “first pass” images depict tissue vascularization and perfusion. Radiology 192:835–843

    PubMed  CAS  Google Scholar 

  23. Wiekes CH, Visicher MB (1975) Some physiological aspects of bone marrow pressure. J Bone Joint Surg Am 7:49–57

    Google Scholar 

  24. Zamboni L, Pease DC (1961) The vascular bed of red bone marrow. Ultrastr Res 5:65–73

    Article  CAS  Google Scholar 

  25. Laroche M (1996) Arteriosclerosis and osteoporosis (editorial). Presse Med 25:52–54

    PubMed  CAS  Google Scholar 

  26. Justesen J, Stenderup K, Ebbesen EN, Mosekilde L, Steniche T, Kassem M (2001) Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology 2(3):165–171

    Article  PubMed  CAS  Google Scholar 

  27. Griffith JF, Yeung DKW, Antonio GE et al (2005) Vertebral bone mineral density, marrow perfusion, and fat content in healthy men and men with osteoporosis: dynamic contrast-enhanced MR imaging and MR spectroscopy. Radiology 236:945–951

    Article  PubMed  Google Scholar 

  28. Griffith JF, Yeung DKW, Antonio GE et al (2006) Vertebral marrow fat content and diffusion and perfusion indexes in women with varying bone density: MR evaluation. Radiology 241:831–838

    Article  PubMed  Google Scholar 

  29. Gardner-Morse MG, Stokes IA (2004) Structural behavior of human lumbar spinal motion segments. J Biomech 37(2):205–212

    Article  PubMed  Google Scholar 

  30. Shih TTF, Liu HC, Chang CJ, Wei SY, Shen LC, Yang PC (2004) Correlation of MR lumbar spine bone marrow perfusion with bone mineral density in female subjects. Radiology 233:121–128

    Article  PubMed  Google Scholar 

  31. Demler K, Otte P, Bartl R et al (1983) Osteopenia, marrow atrophy and capillary circulation. Comparative studies of the human iliac crest and 1st lumbar vertebra. Z Orthop 121:223–227

    Article  Google Scholar 

  32. Burkhardt R, Kettner G, Bohm W et al (1987) Changes in trabecular bone, hematoppoiesis and bone marrow vessels in aplastic anemia, primary osteoporosis, and old age: a comparative histomorphometric study. Bone 8:157–164

    Article  PubMed  CAS  Google Scholar 

  33. Kannel WB, Hjortland MC, McNamara PM, Gordon T (1976) Menopause and the risk of cardiovascular disease: the Framingham study. Ann Intern Med 85:447–452

    PubMed  CAS  Google Scholar 

  34. Colditz GA, Willert WC, Stampfer MJ, Rosner B, Speizer FE, Hennekens CH (1987) Menopause and the risk of coronary heart disease in women. N Engl J Med 316:1105–1110

    PubMed  CAS  Google Scholar 

  35. Riggs BL, Melton LJ 3rd (1986) Involutional osteoporosis. N Engl J Med 314:1676–1686

    PubMed  CAS  Google Scholar 

  36. Mazess RB, Barden HS, Ettinger M et al (1987) Spine and femur density using dual photon absorptiometry in US white women. Bone Miner 2:211–219

    Article  PubMed  CAS  Google Scholar 

  37. Jensen GF, Boesen J, Transbal I (1986) Spinal osteoporosis: a local vascular disease? (abstr). Calcif Tissue Int 39:A62

    Google Scholar 

  38. Frye MA, Melton JL 3rd, Bryant SC et al (1992) Osteoporosis and calcification of the aorta. Bone Miner 19:185–194

    Article  PubMed  CAS  Google Scholar 

  39. Banks LM, Lees B, Mac Sweeney JE, Stevenson JC (1994) Effect of degenerative spinal and aortic calcification on bone density measurements in post- menopausal women: links between osteoporosis and cardiovascular disease. Eur J Clin Invest 24:813–817

    Article  PubMed  CAS  Google Scholar 

  40. Kiel DP, Kaupilla LI, Cupples LA, Hannan MT, O’Donnel CJ, Wilson PW (2001) Bone loss and the progression of abdominal aortic calcification over a 25-year period; The Framingham Heart Study. Calcif Tissue Int 68:271–276

    Article  PubMed  CAS  Google Scholar 

  41. Tsai KS, Pan WH, Hsu SHJ et al (1996) Sexual differences in bone markers and bone mineral density of normal Chinese. Calcif Tissue Int 59:454–460

    PubMed  CAS  Google Scholar 

  42. Dunnil MS, Anderson JA, Whitehead R (1967) Quantitative histological studies on age changes in bone. J Pathol Bacteriol 94:275–291

    Article  Google Scholar 

  43. Modic MT, Masaryk TJ, Ross JS, Carter JR (1988) Imaging of degenerative disk disease. Radiology 168:177–186

    PubMed  CAS  Google Scholar 

  44. Kuisma M, Karppinen J, Niinimäki J et al (2006) A three-year follow-up of lumbar spine endplate (Modic) changes. Spine 31(15):1714–1718

    Article  PubMed  Google Scholar 

  45. Kuisma M, Karppinen J, Niinimäki J et al (2007) Modic changes in endplates of lumbar vertebral bodies: prevalence and association with low back and sciatic pain among middle-aged male workers. Spine 32(10):1116–1122

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We greatly acknowledge the valuable help of our MR technologists, M. Roussakis and M. Ioannidis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lia Angela Moulopoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savvopoulou, V., Maris, T.G., Vlahos, L. et al. Differences in perfusion parameters between upper and lower lumbar vertebral segments with dynamic contrast-enhanced MRI (DCE MRI). Eur Radiol 18, 1876–1883 (2008). https://doi.org/10.1007/s00330-008-0943-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-008-0943-8

Keywords

Navigation