European Radiology

, Volume 18, Issue 3, pp 592–599 | Cite as

Radiation dose estimates in dual-source computed tomography coronary angiography

  • Paul Stolzmann
  • Hans Scheffel
  • Thomas Schertler
  • Thomas Frauenfelder
  • Sebastian Leschka
  • Lars Husmann
  • Thomas G. Flohr
  • Borut Marincek
  • Philipp A. Kaufmann
  • Hatem Alkadhi


The purpose of this study was to quantify radiation dose parameters of dual-source CT coronary angiography. Eighty patients underwent contrast-enhanced, retrospectively ECG-gated dual-source CT coronary angiography with heart rate-adapted ECG pulsing using two algorithms: In 40 patients, the tube current was reduced to 20% (Amin1) of the normal tube current (Amax) outside the pulsing window; in 40 patients tube current was reduced to 4% (Amin2) of Amax. Mean CTDIvol in the Amin1 group was 45.1 ± 3.6 mGy; the mean CTDIvol in the Amin2 group was 39.1 ± 3.2 mGy, with CTDIvol in the Amin2 group being significantly reduced when compared to the Amin1 group (P < 0.001). A significant negative correlation was found between CTDIvol and heart rate in group Amin1 (r = −0.82, P < 0.001), whereas no correlation was found between CTDIvol and heart rate in group Amin2 (r = −0.066). Using the conversion coefficient for the chest, dual-source CT coronary angiography resulted in an estimated mean effective dose of 8.8 mSv in the Amin1 group and 7.8 mSv in the Amin2. Radiation exposure of dual-source CT coronary angiography using an ECG-pulsing protocol reducing the tube current to 20% significantly decreases with increasing heart rates, despite using wider pulsing windows at higher heart rates. When using a protocol with reduced tube current of 4%, the radiation dose is significantly lower, irrespective of the heart rate.


Coronary angiography Dual-source computed tomography Radiation dose 


  1. 1.
    Leber AW et al (2005) Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography: a comparative study with quantitative coronary angiography and intravascular ultrasound. J Am Coll Cardiol 46:147–154PubMedCrossRefGoogle Scholar
  2. 2.
    Leschka S et al (2005) Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur Heart J 26:1482–1487PubMedCrossRefGoogle Scholar
  3. 3.
    Mollet NR et al (2005) High-resolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. Circulation 112:2318–2323PubMedCrossRefGoogle Scholar
  4. 4.
    Raff GL, Gallagher MJ, O’Neill WW, Goldstein JA (2005) Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol 46:552–557PubMedCrossRefGoogle Scholar
  5. 5.
    Flohr TG et al (2006) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16:256–268PubMedCrossRefGoogle Scholar
  6. 6.
    Achenbach S et al (2006) Contrast-enhanced coronary artery visualization by dual-source computed tomography–initial experience. Eur J Radiol 57:331–335PubMedCrossRefGoogle Scholar
  7. 7.
    Johnson TR et al (2006) Dual-source CT cardiac imaging: initial experience. Eur Radiol 16:1409–1415PubMedCrossRefGoogle Scholar
  8. 8.
    Scheffel H et al (2006) Accuracy of dual-source CT coronary angiography: First experience in a high pre-test probability population without heart rate control. Eur Radiol 16:2739–2747PubMedCrossRefGoogle Scholar
  9. 9.
    Yates SJ, Pike LC, Goldstone KE (2004) Effect of multislice scanners on patient dose from routine CT examinations in East Anglia. Br J Radiol 77:472–478PubMedCrossRefGoogle Scholar
  10. 10.
    Gerber TC, Kuzo RS, Morin RL (2005) Techniques and parameters for estimating radiation exposure and dose in cardiac computed tomography. Int J Cardiovasc Imaging 21:165–176PubMedCrossRefGoogle Scholar
  11. 11.
    Primak AN, McCollough CH, Bruesewitz MR, Zhang J, Fletcher JG (2006) Relationship between noise, dose, and pitch in cardiac multi-detector row CT. Radiographics 26:1785–1794PubMedCrossRefGoogle Scholar
  12. 12.
    Jakobs TF et al (2002) Multislice helical CT of the heart with retrospective ECG gating: reduction of radiation exposure by ECG-controlled tube current modulation. Eur Radiol 12:1081–1086PubMedCrossRefGoogle Scholar
  13. 13.
    McCollough CH et al (2007) Dose performance of a 64-channel dual-source CT scanner. Radiology 243:775–784PubMedCrossRefGoogle Scholar
  14. 14.
    Leschka S et al (2007) Image Quality and Reconstruction Intervals of Dual-Source CT Coronary Angiography: Recommendations for ECG-Pulsing Windowing. Invest Radiol 42:543–549PubMedCrossRefGoogle Scholar
  15. 15.
    Menzel H, Schibilla H, Teunen D, eds. (2000) European guidelines on quality criteria for computed tomography. Luxembourg: European Commission Publication No. EUR 16262 ENGoogle Scholar
  16. 16.
    Hausleiter J et al (2006) Radiation dose estimates from cardiac multislice computed tomography in daily practice: impact of different scanning protocols on effective dose estimates. Circulation 113:1305–1310PubMedCrossRefGoogle Scholar
  17. 17.
    Morin RL (1988) Monte carlo simulation in the radiological sciences. CRC Press, Boca Raton, FLGoogle Scholar
  18. 18.
    Austen WG et al (1975) A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association. Circulation 51:5–40PubMedGoogle Scholar
  19. 19.
    McCollough CH (2003) Patient dose in cardiac computed tomography. Herz 28:1–6PubMedCrossRefGoogle Scholar
  20. 20.
    McCollough CH, Schueler BA (2000) Calculation of effective dose. Med Phys 27:828–837PubMedCrossRefGoogle Scholar
  21. 21.
    Schardt P et al (2004) New x-ray tube performance in computed tomography by introducing the rotating envelope tube technology. Med Phys 31:2699–2706PubMedCrossRefGoogle Scholar
  22. 22.
    Wierzbicki M, Guiraudon GM, Jones DL, Peters T (2007) Dose reduction for cardiac CT using a registration-based approach. Med Phys 34:1884–1895PubMedCrossRefGoogle Scholar
  23. 23.
    Kuon E, Robinson DM, Empen K, Dahm JB (2005) [Fluoroscopy time – an overestimated factor for patient radiation exposure in invasive cardiology]. Rofo 177:812–817PubMedGoogle Scholar
  24. 24.
    Coles DR et al (2006) Comparison of radiation doses from multislice computed tomography coronary angiography and conventional diagnostic angiography. J Am Coll Cardiol 47:1840–1845PubMedCrossRefGoogle Scholar
  25. 25.
    Aroua A, Trueb P, Vader JP, Valley JF, Verdun FR (2007) Exposure of the Swiss population by radiodiagnostics: 2003 review. Health Phys 92:442–448PubMedCrossRefGoogle Scholar
  26. 26.
    Zanzonico P, Rothenberg LN, Strauss HW (2006) Radiation exposure of computed tomography and direct intracoronary angiography: risk has its reward. J Am Coll Cardiol 47:1846–1849PubMedCrossRefGoogle Scholar
  27. 27.
    Becker C et al (1999) [Assessment of the effective dose for routine protocols in conventional CT, electron beam CT and coronary angiography]. Rofo 170:99–104PubMedGoogle Scholar
  28. 28.
    Das M et al (2005) Individually adapted examination protocols for reduction of radiation exposure for 16-MDCT chest examinations. AJR Am J Roentgenol 184:1437–1443PubMedGoogle Scholar
  29. 29.
    Nyman U, Ahl TL, Kristiansson M, Nilsson L, Wettemark S (2005) Patient-circumference-adapted dose regulation in body computed tomography. A practical and flexible formula. Acta Radiol 46:396–406PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2007

Authors and Affiliations

  • Paul Stolzmann
    • 1
  • Hans Scheffel
    • 1
  • Thomas Schertler
    • 1
  • Thomas Frauenfelder
    • 1
  • Sebastian Leschka
    • 1
  • Lars Husmann
    • 1
  • Thomas G. Flohr
    • 2
  • Borut Marincek
    • 1
  • Philipp A. Kaufmann
    • 3
  • Hatem Alkadhi
    • 1
  1. 1.Institute of Diagnostic RadiologyUniversity Hospital ZurichZurichSwitzerland
  2. 2.Siemens Medical SolutionsForchheimGermany
  3. 3.Cardiovascular CenterForchheimGermany

Personalised recommendations