European Radiology

, Volume 18, Issue 4, pp 700–706 | Cite as

Diffusion-weighted MR imaging of the normal fetal lung

  • Csilla BalassyEmail author
  • Gregor Kasprian
  • Peter C. Brugger
  • Bence Csapo
  • Michael Weber
  • Marcus Hörmann
  • Alexander Bankier
  • Roland Bammer
  • Christian J. Herold
  • Daniela Prayer


To quantify apparent diffusion coefficient (ADC) changes in fetuses with normal lungs and to determine whether ADC can be used in the assessment of fetal lung development. In 53 pregnancies (20–37th weeks of gestation), we measured ADC on diffusion-weighted imaging (DWI) in the apical, middle, and basal thirds of the right lung. ADCs were correlated with gestational age. Differences between the ADCs were assessed. Fetal lung volumes were measured on T2-weighted sequences and correlated with ADCs and with age. ADCs were 2.13 ± 0.44 μm2/ms (mean ± SD) in the apex, 1.99 ± 0.42 μm2/ms (mean ± SD) in the middle third, and 1.91 ± 0.41 μm2/ms (mean ± SD) in the lung base. Neither the individual ADC values nor average ADC values showed a significant correlation with gestational age or with lung volumes. Average ADCs decreased significantly from the lung apex toward the base. Individual ADCs showed little absolute change and heterogeneity. Lung volumes increased significantly during gestation. We have not been able to identify a pattern of changes in the ADC values that correlate with lung maturation. Furthermore, the individual, gravity-related ADC changes are subject to substantial variability and show nonuniform behavior. ADC can therefore not be used as an indicator of lung maturity.


Fetal lung Diffusion-weighted MR imaging Apparent diffusion coefficient Lung development 



This work is supported by the European Congress of Radiology (ECR) Research and Education Fund: In vivo investigation of fetal lung maturation with magnetic resonance imaging and magnetic resonance spectroscopy. Siemens Visiting Research Fellowship Grant, 2004.


  1. 1.
    Frates MC, Kumar AJ, Benson CB, Ward VL, Tempany CM (2004) Fetal anomalies: comparison of MR imaging and US for diagnosis. Radiology 232:398–404PubMedCrossRefGoogle Scholar
  2. 2.
    Hubbard AM (2003) Ultrafast fetal MRI and prenatal diagnosis. Semin Pediatr Surg 12:143–153PubMedCrossRefGoogle Scholar
  3. 3.
    Prayer D, Brugger PC (2007) Investigation of normal organ development with fetal MRI. Eur Radiol (in press). DOI  10.1007/s00330-007-0604-3
  4. 4.
    Brewerton LJ, Chari RS, Liang Y, Bhargava R (2005) Fetal lung-toliver signal intensity ratio at MR imaging: development of a normal scale and possible role in predicting pulmonary hypoplasia in utero. Radiology 235:1005–1010PubMedCrossRefGoogle Scholar
  5. 5.
    Balassy C, Kasprian G, Brugger PC, Weber M, Csapo B, Mittermayer C, Hörmann M, Prayer D (2007) MRI investigation of normal fetal lung maturation using signal intensities on different imaging sequences. Eur Radiol 17(3):835–842PubMedCrossRefGoogle Scholar
  6. 6.
    Keller TM, Rake A, Michel SC, Seifert B, Wisser J, Marincek B, Kubik-Huch RA (2004) MR assessment of fetal lung development using lung volumes and signal intensities. Eur Radiol 14:984–989PubMedCrossRefGoogle Scholar
  7. 7.
    Kuwashima S, Nishimura G, Iimura F, Kohno T, Watanabe H, Kohno A, Fujioka M (2001) Low-intensity fetal lungs on MRI may suggest the diagnosis of pulmonary hypoplasia. Pediatr Radiol 31:669–672PubMedCrossRefGoogle Scholar
  8. 8.
    Levine D, Barnewolt CE, Mehta TS, Trop I, Estroff J, Wong G (2003) Fetal thoracic abnormalities: MR imaging. Radiology 228:379–388PubMedCrossRefGoogle Scholar
  9. 9.
    Osada H, Kaku K, Masuda K, Iitsuka Y, Seki K, Sekiya S (2004) Quantitative and qualitative evaluations of fetal lung with MR imaging. Radiology 231:887–892PubMedCrossRefGoogle Scholar
  10. 10.
    Williams G, Coakley FV, Qayyum A, Farmer DL, Joe BN, Filly RA (2004) Fetal relative lung volume: quantification by using prenatal MR imaging lung volumetry. Radiology 233:457–462PubMedCrossRefGoogle Scholar
  11. 11.
    Luypaert R, Boujraf S, Sourbron S, Osteaux M (2001) Diffusion and perfusion MRI: basic physics. Eur J Radiol 38:19–27PubMedCrossRefGoogle Scholar
  12. 12.
    Moore RJ, Strachan B, Tyler DJ, Baker PN, Gowland PA (2001) In vivo diffusion measurements as an indication of fetal lung maturation using echo planar imaging at 0.5 T. Magn Reson Med 45:247–253PubMedCrossRefGoogle Scholar
  13. 13.
    Laudy JA, Wladimiroff JW (2000) The fetal lung. 1: Developmental aspects. Ultrasound Obstet Gynecol 16:284–290PubMedCrossRefGoogle Scholar
  14. 14.
    Harding R, Hooper SB (1996) Regulation of lung expansion and lung growth before birth. J Appl Physiol 81:209–224PubMedGoogle Scholar
  15. 15.
    Langston C, Kida K, Reed M, Thurlbeck WM (1984) Human lung growth in late gestation and in the neonate. Am Rev Respir Dis 129:607–613PubMedGoogle Scholar
  16. 16.
    Hislop A (2005) Developmental biology of the pulmonary circulation. Paediatr Respir Rev 6:35–43PubMedCrossRefGoogle Scholar
  17. 17.
    Schachtner SK, Wang Y, Scott Baldwin H (2000) Qualitative and quantitative analysis of embryonic pulmonary vessel formation. Am J Respir Cell Mol Biol 22:157–165PubMedGoogle Scholar
  18. 18.
    Emerson D, MS C (1995) The fetal pulmonary circulation. In: Copel J, Reed K (eds) Ultrasound in obstetrics and gyneocology. Raven, New York, pp 307–323Google Scholar
  19. 19.
    Hislop A, Reid L (1977) Formation of the pulmonary vasculature. In: Hodson W (ed) Development of the lung. Marcel Dekker, New YorkGoogle Scholar
  20. 20.
    Polglase GR, Wallace MJ, Grant DA, Hooper SB (2004) Influence of fetal breathing movements on pulmonary hemodynamics in fetal sheep. Pediatr Res 56:932–938PubMedCrossRefGoogle Scholar
  21. 21.
    Patrick J, Challis J (1980) Measurement of human fetal breathing movements in healthy pregnancies using a real-time scanner. Semin Perinatol 4:275–286PubMedGoogle Scholar
  22. 22.
    Harding R, Hooper SB, Dickson KA (1990) A mechanism leading to reduced lung expansion and lung hypoplasia in fetal sheep during oligohydramnios. Am J Obstet Gynecol 163:1904–1913PubMedGoogle Scholar
  23. 23.
    Zeltner TB, Bertacchini M, Messerli A, Burri PH (1990) Morphometric estimation of regional differences in the rat lung. Exp Lung Res 16:145–158PubMedCrossRefGoogle Scholar
  24. 24.
    Harding R, Liggins GC (1996) Changes in thoracic dimensions induced by breathing movements in fetal sheep. Reprod Fertil Dev 8:117–124PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2007

Authors and Affiliations

  • Csilla Balassy
    • 1
    Email author
  • Gregor Kasprian
    • 1
  • Peter C. Brugger
    • 2
  • Bence Csapo
    • 3
  • Michael Weber
    • 1
  • Marcus Hörmann
    • 1
  • Alexander Bankier
    • 1
  • Roland Bammer
    • 4
  • Christian J. Herold
    • 1
  • Daniela Prayer
    • 1
  1. 1.Department of RadiologyMedical University of ViennaViennaAustria
  2. 2.Center of Anatomy and Cell BiologyMedical University of ViennaViennaAustria
  3. 3.Department of Obstetrics and GyneocologyMedical University of ViennaViennaAustria
  4. 4.Department of RadiologyUniversity of StanfordStanfordUSA

Personalised recommendations