Advertisement

European Radiology

, Volume 17, Issue 6, pp 1433–1444 | Cite as

Characterization of myocardial viability using MR and CT imaging

  • Gabriele A. KrombachEmail author
  • Thoralf Niendorf
  • Rolf W. Günther
  • Andreas H. Mahnken
Cardiac

Abstract

Cardiovascular magnetic resonance (MR) imaging is of proven clinical value for the noninvasive characterization of myocardial viability. Computed tomography (CT) is also being exploited for this indication. Examples of each of these imaging strategies for the assessment of myocardial viability will be provided in this review. Key MRI concepts and practical considerations such as customized MR imaging techniques and tailored imaging protocols dedicated to viability assessment are outlined with the primary focus on recent developments. Clinical applications of MR-based viability assessment are reviewed, ranging from rapid functional cine imaging to tissue characterization using T2-weighted imaging and T1-weighted late-contrast-enhanced imaging. Next, the merits and limitations of state-of-the-art CT imaging are surveyed, and their implications for viability assessment are considered. The final emphasis is on current trends and future directions in noninvasive viability assessment using MRI and CT.

Keywords

Cardiac magnetic resonance imaging Myocardial viability Myocardial infarction Computed tomography 

References

  1. 1.
    Gersh BJ, Anderson JL (1993) Thrombolysis and myocardial salvage. Results of clinical trials and the animal paradigm-paradoxic or predictable? Circulation 88(1):296–306PubMedGoogle Scholar
  2. 2.
    Pennell DJ, Sechtem UP, Higgins CB, Manning WJ, Pohost GM, Rademakers FE, van Rossum AC, Shaw LJ, Yucel EK (2004) Clinical indications for cardiovascular magnetic resonance (CMR): Consensus Panel report. Eur Heart J 25(21):1940–1965PubMedCrossRefGoogle Scholar
  3. 3.
    Lima JA, Desai MY (2004) Cardiovascular magnetic resonance imaging: current and emerging applications. J Am Coll Cardiol 44(6):1164–1171PubMedCrossRefGoogle Scholar
  4. 4.
    Bogaert J, Dymarkowski S (2005) Delayed contrast-enhanced MRI: use in myocardial viability assessment and other cardiac pathology. Eur Radiol 15(Suppl 2):B52–B58PubMedGoogle Scholar
  5. 5.
    Judd RM, Wagner A, Rehwald WG, Albert T, Kim RJ (2005) Technology insight: assessment of myocardial viability by delayed-enhancement magnetic resonance imaging. Nat Clin Pract Cardiovasc Med 2(3):150–158PubMedCrossRefGoogle Scholar
  6. 6.
    Isbell DC, Kramer CM (2005) Cardiovascular magnetic resonance: structure, function, perfusion, and viability. J Nucl Cardiol 12(3):324–336PubMedCrossRefGoogle Scholar
  7. 7.
    Bucciarelli-Ducci C, Wu E, Lee DC, Holly TA, Klocke FJ, Bonow RO (2006) Contrast-enhanced cardiac magnetic resonance in the evaluation of myocardial infarction and myocardial viability in patients with ischemic heart disease. Curr Probl Cardiol 31(2):128–168PubMedCrossRefGoogle Scholar
  8. 8.
    Wu E, Judd RM, Vargas JD, Klocke FJ, Bonow RO, Kim RJ (2001) Visualisation of presence, location, and transmural extent of healed Q-wave and non-Q-wave myocardial infarction. Lancet 357(9249):21–28PubMedCrossRefGoogle Scholar
  9. 9.
    Gerber BL, Belge B, Legros GJ, Lim P, Poncelet A, Pasquet A, Gisellu G, Coche E, Vanoverschelde JL (2006) Characterization of acute and chronic myocardial infarcts by multidetector computed tomography: comparison with contrast-enhanced magnetic resonance. Circulation 113(6):823–833PubMedCrossRefGoogle Scholar
  10. 10.
    Gutberlet M, Noeske R, Schwinge K, Freyhardt P, Felix R, Niendorf T (2006) Comprehensive cardiac magnetic resonance imaging at 3.0 Tesla: feasibility and implications for clinical applications. Invest Radiol 41(2):154–167PubMedCrossRefGoogle Scholar
  11. 11.
    Sodickson DK, Hardy CJ, Zhu Y, Giaquinto RO, Gross P, Kenwood G, Niendorf T, Lejay H, McKenzie CA, Ohliger MA, Grant AK, Rofsky NM (2005) Rapid volumetric MRI using parallel imaging with order-of-magnitude accelerations and a 32-element RF coil array: feasibility and implications. Acad Radiol 12(5):626–635PubMedCrossRefGoogle Scholar
  12. 12.
    Lorenz CH, Walker ES, Morgan VL, Klein SS, Graham TP Jr (1999) Normal human right and left ventricular mass, systolic function, and gender differences by cine magnetic resonance imaging. J Cardiovasc Magn Reson 1(1):7–21PubMedGoogle Scholar
  13. 13.
    Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan T, Verani MS (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105(4):539–542PubMedCrossRefGoogle Scholar
  14. 14.
    Wellnhofer E, Olariu A, Klein C, Grafe M, Wahl A, Fleck E, Nagel E (2004) Magnetic resonance low-dose dobutamine test is superior to SCAR quantification for the prediction of functional recovery. Circulation 109(18):2172–2174PubMedCrossRefGoogle Scholar
  15. 15.
    Nagel E, Lehmkuhl HB, Bocksch W, Klein C, Vogel U, Frantz E, Ellmer A, Dreysse S, Fleck E (1999) Noninvasive diagnosis of ischemia-induced wall motion abnormalities with the use of high-dose dobutamine stress MRI: comparison with dobutamine stress echocardiography. Circulation 99(6):763–770PubMedGoogle Scholar
  16. 16.
    Simonetti OP, Finn JP, White RD, Laub G, Henry DA (1996) “Black blood” T2-weighted inversion-recovery MR imaging of the heart. Radiology 199(1):49–57PubMedGoogle Scholar
  17. 17.
    Gutberlet M, Schwinge K, Freyhardt P, Spors B, Grothoff M, Denecke T, Ludemann L, Noeske R, Niendorf T, Felix R (2005) Influence of high magnetic field strengths and parallel acquisition strategies on image quality in cardiac 2D CINE magnetic resonance imaging: comparison of 1.5 T vs. 3.0 T. Eur Radiol 15(8):1586–1597PubMedCrossRefGoogle Scholar
  18. 18.
    Choi SI, Jiang CZ, Lim KH, Kim ST, Lim CH, Gong GY, Lim TH (2000) Application of breath-hold T2-weighted, first-pass perfusion and gadolinium-enhanced T1-weighted MR imaging for assessment of myocardial viability in a pig model. J Magn Reson Imaging 11(5):476–480PubMedCrossRefGoogle Scholar
  19. 19.
    Abdel-Aty H, Zagrosek A, Schulz-Menger J, Taylor AJ, Messroghli D, Kumar A, Gross M, Dietz R, Friedrich MG (2004) Delayed enhancement and T2-weighted cardiovascular magnetic resonance imaging differentiate acute from chronic myocardial infarction. Circulation 109(20):2411–2416PubMedCrossRefGoogle Scholar
  20. 20.
    Fieno DS, Kim RJ, Chen EL, Lomasney JW, Klocke FJ, Judd RM (2000) Contrast-enhanced magnetic resonance imaging of myocardium at risk: distinction between reversible and irreversible injury throughout infarct healing. J Am Coll Cardiol 36(6):1985–1991PubMedCrossRefGoogle Scholar
  21. 21.
    Schwitter J, Nanz D, Kneifel S, Bertschinger K, Buchi M, Knusel PR, Marincek B, Luscher TF, von Schulthess GK (2001) Assessment of myocardial perfusion in coronary artery disease by magnetic resonance: a comparison with positron emission tomography and coronary angiography. Circulation 103(18):2230–2235PubMedGoogle Scholar
  22. 22.
    Wolff SD, Schwitter J, Coulden R, Friedrich MG, Bluemke DA, Biederman RW, Martin ET, Lansky AJ, Kashanian F, Foo TK, Licato PE, Comeau CR (2004) Myocardial first-pass perfusion magnetic resonance imaging: a multicenter dose-ranging study. Circulation 110(6):732–737PubMedCrossRefGoogle Scholar
  23. 23.
    Hunold P, Maderwald S, Eggebrecht H, Vogt FM, Barkhausen J (2004) Steady-state free precession sequences in myocardial first-pass perfusion MR imaging: comparison with TurboFLASH imaging. Eur Radiol 14(3):409–416PubMedCrossRefGoogle Scholar
  24. 24.
    Manning WJ, Atkinson DJ, Grossman W, Paulin S, Edelman RR (1991) First-pass nuclear magnetic resonance imaging studies using gadolinium-DTPA in patients with coronary artery disease. J Am Coll Cardiol 18(4):959–965PubMedCrossRefGoogle Scholar
  25. 25.
    Jerosch-Herold M, Muehling O, Wilke N (2006) MRI of myocardial perfusion. Semin Ultrasound CT MR 27(1):2–10PubMedCrossRefGoogle Scholar
  26. 26.
    Saeed M, Wendland MF, Yu KK, Lauerma K, Li HT, Derugin N, Cavagna FM, Higgins CB (1994) Identification of myocardial reperfusion with echo planar magnetic resonance imaging. Discrimination between occlusive and reperfused infarctions. Circulation 90(3):1492–1501PubMedGoogle Scholar
  27. 27.
    Rogers WJ Jr, Kramer CM, Geskin G, Hu YL, Theobald TM, Vido DA, Petruolo S, Reichek N (1999) Early contrast-enhanced MRI predicts late functional recovery after reperfused myocardial infarction. Circulation 99(6):744–750PubMedGoogle Scholar
  28. 28.
    McNamara MT, Higgins CB, Ehman RL, Revel D, Sievers R, Brasch RC (1984) Acute myocardial ischemia: magnetic resonance contrast enhancement with gadolinium-DTPA. Radiology 153(1):157–163PubMedGoogle Scholar
  29. 29.
    Masui T, Saeed M, Wendland MF, Higgins CB (1991) Occlusive and reperfused myocardial infarcts: MR imaging differentiation with nonionic Gd-DTPA-BMA. Radiology 181(1):77–83PubMedGoogle Scholar
  30. 30.
    Simonetti OP, Kim RJ, Fieno DS, Hillenbrand HB, Wu E, Bundy JM, Finn JP, Judd RM (2001) An improved MR imaging technique for the visualization of myocardial infarction. Radiology 218(1):215–223PubMedGoogle Scholar
  31. 31.
    Kim RJ, Fieno DS, Parrish TB, Harris K, Chen EL, Simonetti O, Bundy J, Finn JP, Klocke FJ, Judd RM (1999) Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 100(19):1992–2002PubMedGoogle Scholar
  32. 32.
    Wagner A, Mahrholdt H, Holly TA, Elliott MD, Regenfus M, Parker M, Klocke FJ, Bonow RO, Kim RJ, Judd RM (2003) Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet 361(9355):374–379PubMedCrossRefGoogle Scholar
  33. 33.
    Oshinski JN, Yang Z, Jones JR, Mata JF, French BA (2001) Imaging time after Gd-DTPA injection is critical in using delayed enhancement to determine infarct size accurately with magnetic resonance imaging. Circulation 104(23):2838–2842PubMedGoogle Scholar
  34. 34.
    Kellman P, Arai AE, McVeigh ER, Aletras AH (2002) Phase-sensitive inversion recovery for detecting myocardial infarction using gadolinium-delayed hyperenhancement. Magn Reson Med 47(2):372–383PubMedCrossRefGoogle Scholar
  35. 35.
    Mahrholdt H, Wagner A, Holly TA, Elliott MD, Bonow RO, Kim RJ, Judd RM (2002) Reproducibility of chronic infarct size measurement by contrast-enhanced magnetic resonance imaging. Circulation 106(18):2322–2327PubMedCrossRefGoogle Scholar
  36. 36.
    Rehwald WG, Fieno DS, Chen EL, Kim RJ, Judd RM (2002) Myocardial magnetic resonance imaging contrast agent concentrations after reversible and irreversible ischemic injury. Circulation 105(2):224–229PubMedCrossRefGoogle Scholar
  37. 37.
    Choi KM, Kim RJ, Gubernikoff G, Vargas JD, Parker M, Judd RM (2001) Transmural extent of acute myocardial infarction predicts long-term improvement in contractile function. Circulation 104(10):1101–1107PubMedGoogle Scholar
  38. 38.
    Wu E, Judd RM, Vargas JD, Klocke FJ, Bonow RO, Kim RJ (2001) Visualisation of presence, location, and transmural extent of healed Q-wave and non-Q-wave myocardial infarction. Lancet 357(9249):21–28PubMedCrossRefGoogle Scholar
  39. 39.
    Lauerma K, Niemi P, Hanninen H, Janatuinen T, Voipio-Pulkki LM, Knuuti J, Toivonen L, Makela T, Makijarvi MA, Aronen HJ (2000) Multimodality MR imaging assessment of myocardial viability: combination of first-pass and late contrast enhancement to wall motion dynamics and comparison with FDG PET-initial experience. Radiology 217(3):729–736PubMedGoogle Scholar
  40. 40.
    Ansari M, Araoz PA, Gerard SK, Watzinger N, Lund GK, Massie BM, Higgins CB, Saloner DA (2004) Comparison of late enhancement cardiovascular magnetic resonance and thallium SPECT in patients with coronary disease and left ventricular dysfunction. J Cardiovasc Magn Reson 6(2):549–556PubMedCrossRefGoogle Scholar
  41. 41.
    Saeed M, Higgins CB, Geschwind JF, Wendland MF (2000) T1-relaxation kinetics of extracellular, intracellular and intravascular MR contrast agents in normal and acutely reperfused infarcted myocardium using echo-planar MR imaging. Eur Radiol 10(2):310–318PubMedCrossRefGoogle Scholar
  42. 42.
    Krombach GA, Saeed M, Higgins CB, Novikov V, Wendland MF (2004) Contrast-enhanced MR delineation of stunned myocardium with administration of MnCl(2) in rats. Radiology 230(1):183–190PubMedCrossRefGoogle Scholar
  43. 43.
    Kim RJ, Wu E, Rafael A, Chen EL, Parker MA, Simonetti O, Klocke FJ, Bonow RO, Judd RM (2000) The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 343(20):1445–1453PubMedCrossRefGoogle Scholar
  44. 44.
    Knuesel PR, Nanz D, Wyss C, Buechi M, Kaufmann PA, von Schulthess GK, Luscher TF, Schwitter J (2003) Characterization of dysfunctional myocardium by positron emission tomography and magnetic resonance: relation to functional outcome after revascularization. Circulation 108(9):1095–1100PubMedCrossRefGoogle Scholar
  45. 45.
    Kuhl HP, van der Weerdt A, Beek A, Visser F, Hanrath P, van Rossum A (2006) Relation of end-diastolic wall thickness and the residual rim of viable myocardium by magnetic resonance imaging to myocardial viability assessed by fluorine-18 deoxyglucose positron emission tomography. Am J Cardiol 97(4):452–457PubMedCrossRefGoogle Scholar
  46. 46.
    Fuster V, Kim RJ (2005) Frontiers in cardiovascular magnetic resonance. Circulation 112(1):135–144PubMedCrossRefGoogle Scholar
  47. 47.
    Krombach GA, Higgins CB, Chujo M, Saeed M (2005) Gadomer-enhanced MR imaging in the detection of microvascular obstruction: alleviation with nicorandil therapy. Radiology 236(2):510–518PubMedCrossRefGoogle Scholar
  48. 48.
    Lund GK, Stork A, Saeed M, Bansmann MP, Gerken JH, Muller V, Mester J, Higgins CB, Adam G, Meinertz T (2004) Acute myocardial infarction: evaluation with first-pass enhancement and delayed enhancement MR imaging compared with 201Tl SPECT imaging. Radiology 232(1):49–57PubMedCrossRefGoogle Scholar
  49. 49.
    Hunold P, Schlosser T, Vogt FM, Eggebrecht H, Schmermund A, Bruder O, Schuler WO, Barkhausen J (2005) Myocardial late enhancement in contrast-enhanced cardiac MRI: distinction between infarction scar and non-infarction-related disease. AJR Am J Roentgenol 184(5):1420–1426PubMedGoogle Scholar
  50. 50.
    Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU, Ridgway JP (2004) Modified Look-Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med 52(1):141–146PubMedCrossRefGoogle Scholar
  51. 51.
    Beer M, Sandstede J, Pabst T, Landschutz W, Harre K, von Kienlin M, Voelker W, Neubauer S, Hahn D (2000) Assessment of myocardial viability by 31P-MR-spectroscopy and 23Na-MR imaging. MAGMA 11(1–2):44–46PubMedGoogle Scholar
  52. 52.
    Pabst T, Sandstede J, Beer M, Kenn W, Greiser A, von Kienlin M, Neubauer S, Hahn D (2001) Optimization of ECG-triggered 3D (23)Na MRI of the human heart. Magn Reson Med 45(1):164–166PubMedCrossRefGoogle Scholar
  53. 53.
    Kim RJ, Judd RM, Chen EL, Fieno DS, Parrish TB, Lima JA (1999) Relationship of elevated 23Na magnetic resonance image intensity to infarct size after acute reperfused myocardial infarction. Circulation 100(2):185–192PubMedGoogle Scholar
  54. 54.
    Kim RJ, Lima JA, Chen EL, Reeder SB, Klocke FJ, Zerhouni EA, Judd RM (1997) Fast 23Na magnetic resonance imaging of acute reperfused myocardial infarction. Potential to assess myocardial viability. Circulation 95(7):1877–1885PubMedGoogle Scholar
  55. 55.
    Nikolaou K, Knez A, Sagmeister S, Wintersperger BJ, Boekstegers P, Steinbeck G, Reiser MF, Becker CR (2004) Assessment of myocardial infarctions using multidetector-row computed tomography. J Comput Assist Tomogr 28(2):286–292PubMedCrossRefGoogle Scholar
  56. 56.
    Mahnken AH, Koos R, Katoh M, Wildberger JE, Spuentrup E, Buecker A, Gunther RW, Kuhl HP (2005) Assessment of myocardial viability in reperfused acute myocardial infarction using 16-slice computed tomography in comparison to magnetic resonance imaging. J Am Coll Cardiol 45(12):2042–2047PubMedCrossRefGoogle Scholar
  57. 57.
    Nikolaou K, Sanz J, Poon M, Wintersperger BJ, Ohnesorge B, Rius T, Fayad ZA, Reiser MF, Becker CR (2005) Assessment of myocardial perfusion and viability from routine contrast-enhanced 16-detector-row computed tomography of the heart: preliminary results. Eur Radiol 15(5):864–871PubMedCrossRefGoogle Scholar
  58. 58.
    Mahnken AH, Bruners P, Katoh M, Wildberger J, Gunther RW, Buecker A (2006) Dynamic multi-section CT imaging in acute myocardial infarction: preliminary animal experience. Eur Radiol 16(3):746–752PubMedCrossRefGoogle Scholar
  59. 59.
    Kramer PH, Goldstein JA, Herkens RJ, Lipton MJ, Brundage BH (1984) Imaging of acute myocardial infarction in man with contrast-enhanced computed transmission tomography. Am Heart J 108(6):1514–1523PubMedCrossRefGoogle Scholar
  60. 60.
    Schmermund A, Gerber T, Behrenbeck T, Reed JE, Sheedy PF, Christian TF, Rumberger JA (1998) Measurement of myocardial infarct size by electron beam computed tomography: a comparison with 99mTc sestamibi. Invest Radiol 33(6):313–321PubMedCrossRefGoogle Scholar
  61. 61.
    Gosalia A, Haramati LB, Sheth MP, Spindola-Franco H (2004) CT detection of acute myocardial infarction. AJR Am J Roentgenol 182(6):1563–1566PubMedGoogle Scholar
  62. 62.
    Kurata A, Mochizuki T, Koyama Y, Haraikawa T, Suzuki J, Shigematsu Y, Higaki J (2005) Myocardial perfusion imaging using adenosine triphosphate stress multi-slice spiral computed tomography: alternative to stress myocardial perfusion scintigraphy. Circ J 69(5):550–557PubMedCrossRefGoogle Scholar
  63. 63.
    Lardo AC, Cordeiro MA, Silva C, Amado LC, George RT, Saliaris AP, Schuleri KH, Fernandes VR, Zviman M, Nazarian S, Halperin HR, Wu KC, Hare JM, Lima JA (2006) Contrast-enhanced multidetector computed tomography viability imaging after myocardial infarction: characterization of myocyte death, microvascular obstruction, and chronic scar. Circulation 113(3):394–404PubMedCrossRefGoogle Scholar
  64. 64.
    Higgins CB, Sovak M, Schmidt W, Siemers PT (1978) Uptake of contrast materials by experimental acute myocardial infarctions: a preliminary report. Invest Radiol 13(4):337–339PubMedCrossRefGoogle Scholar
  65. 65.
    Paul JF, Wartski M, Caussin C, Sigal-Cinqualbre A, Lancelin B, Angel C, Dambrin G (2005) Late defect on delayed contrast-enhanced multi-detector row CT scans in the prediction of SPECT infarct size after reperfused acute myocardial infarction: initial experience. Radiology 236(2):485–489PubMedCrossRefGoogle Scholar
  66. 66.
    Koyama Y, Matsuoka H, Mochizuki T, Higashino H, Kawakami H, Nakata S, Aono J, Ito T, Naka M, Ohashi Y, Higaki J (2005) Assessment of reperfused acute myocardial infarction with two-phase contrast-enhanced helical CT: prediction of left ventricular function and wall thickness. Radiology 235(3):804–811PubMedCrossRefGoogle Scholar
  67. 67.
    Buecker A, Katoh M, Krombach GA, Spuentrup E, Bruners P, Gunther RW, Niendorf T, Mahnken AH (2005) A feasibility study of contrast enhancement of acute myocardial infarction in multislice computed tomography: comparison with magnetic resonance imaging and gross morphology in pigs. Invest Radiol 40(11):700–704PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Gabriele A. Krombach
    • 1
    Email author
  • Thoralf Niendorf
    • 1
  • Rolf W. Günther
    • 1
  • Andreas H. Mahnken
    • 1
    • 2
  1. 1.Department of Diagnostic RadiologyRWTH Aachen University HospitalAachenGermany
  2. 2.Applied Medical EngineeringHelmholtz Institute, RWTH Aachen UniversityAachenGermany

Personalised recommendations