Advertisement

European Radiology

, Volume 17, Issue 6, pp 1529–1534 | Cite as

Irreversible JPEG 2000 compression of abdominal CT for primary interpretation: assessment of visually lossless threshold

  • Kyoung Ho Lee
  • Young Hoon KimEmail author
  • Bo Hyoung Kim
  • Kil Joong Kim
  • Tae Jung Kim
  • Hyuk Jung Kim
  • Seokyung Hahn
Computer Applications

Abstract

To estimate the visually lossless threshold for Joint Photographic Experts Group (JPEG) 2000 compression of contrast-enhanced abdominal computed tomography (CT) images, 100 images were compressed to four different levels: a reversible (as negative control) and irreversible 5:1, 10:1, and 15:1. By alternately displaying the original and the compressed image on the same monitor, six radiologists independently determined if the compressed image was distinguishable from the original image. For each reader, we compared the proportion of the compressed images being rated distinguishable from the original images between the reversible compression and each of the three irreversible compressions using the exact test for paired proportions. For each reader, the proportion was not significantly different between the reversible (0–1%, 0/100 to 1/100) and irreversible 5:1 compression (0–3%). However, the proportion significantly increased with the irreversible 10:1 (95–99%) and 15:1 compressions (100%) versus reversible compression in all readers (P < 0.001); 100 and 95% of the 5:1 compressed images were rated indistinguishable from the original images by at least five of the six readers and all readers, respectively. Irreversibly 5:1 compressed abdominal CT images are visually lossless and, therefore, potentially acceptable for primary interpretation.

Keywords

Data compression Computed tomography Teleradiology Computer storage devices 

Notes

Acknowledgements

This study was supported by Seoul R&BD Program, Republic of Korea (project number not assigned). We thank Jihyun Yang and Tae Ki Kim, R.T. for their assistance during image dataset preparation.

References

  1. 1.
    Rubin GD (2000) Data explosion: the challenge of multidetector-row CT. Eur J Radiol 36:74–80PubMedCrossRefGoogle Scholar
  2. 2.
    Rubin GD (2003) 3-D imaging with MDCT. Eur J Radiol 45(Suppl 1):S37–S41PubMedCrossRefGoogle Scholar
  3. 3.
    Tamm EP, Thompson S, Venable SL, McEnery K (2002) Impact of multislice CT on PACS resources. J Digit Imaging 15(Suppl 1):96–101PubMedCrossRefGoogle Scholar
  4. 4.
    Lee KH, Lee HJ, Kim JH, Kang HS, Lee KW, Hong H, Chin HJ, Ha KS (2005) Managing the CT data explosion: initial experiences of archiving volumetric datasets in a mini-PACS. J Digit Imaging 18:188–195PubMedCrossRefGoogle Scholar
  5. 5.
    Erickson BJ, Manduca A, Palisson P, Persons KR, Earnest Ft, Savcenko V, Hangiandreou NJ (1998) Wavelet compression of medical images. Radiology 206:599–607PubMedGoogle Scholar
  6. 6.
    Slone RM, Muka E, Pilgram TK (2003) Irreversible JPEG compression of digital chest radiographs for primary interpretation: assessment of visually lossless threshold. Radiology 228:425–429PubMedCrossRefGoogle Scholar
  7. 7.
    Goldberg MA, Gazelle GS, Boland GW, Hahn PF, Mayo-Smith WW, Pivovarov M, Halpern EF, Wittenberg J (1997) Focal hepatic lesions: effect of three-dimensional wavelet compression on detection at CT. Radiology 202:159–165PubMedGoogle Scholar
  8. 8.
    Daly S (1990) Application of a noise-adaptive contrast sensitivity function to image data compression. Opt Eng 29:977–987CrossRefGoogle Scholar
  9. 9.
    Slone RM, Foos DH, Whiting BR, Muka E, Rubin DA, Pilgram TK, Kohm KS, Young SS, Ho P, Hendrickson DD (2000) Assessment of visually lossless irreversible image compression: comparison of three methods by using an image-comparison workstation. Radiology 215:543–553PubMedGoogle Scholar
  10. 10.
    Mahesh M, Scatarige JC, Cooper J, Fishman EK (2001) Dose and pitch relationship for a particular multislice CT scanner. AJR Am J Roentgenol 177:1273–1275PubMedGoogle Scholar
  11. 11.
    Newcombe RG (1998) Two-sided confidence intervals for the single proportion: comparison of seven methods. Stat Med 17:857–872PubMedCrossRefGoogle Scholar
  12. 12.
    Liddell FD (1983) Simplified exact analysis of case-referent studies: matched pairs; dichotomous exposure. J Epidemiol Community Health 37:82–84PubMedCrossRefGoogle Scholar
  13. 13.
    Bak PRG (2005) Does irreversible compression impact the diagnostic quality of medical images?-A review of research to date. Society for Computer Applications in Radiology Scientific Abstracts 22–24Google Scholar
  14. 14.
    Cosman PC, Davidson HC, Bergin CJ, Tseng CW, Moses LE, Riskin EA, Olshen RA, Gray RM (1994) Thoracic CT images: effect of lossy image compression on diagnostic accuracy. Radiology 190:517–524PubMedGoogle Scholar
  15. 15.
    Zheng LM, Sone S, Itani Y, Wang Q, Hanamura K, Asakura K, Li F, Yang ZG, Wang JC, Funasaka T (2000) Effect of CT digital image compression on detection of coronary artery calcification. Acta Radiol 41:116–121PubMedCrossRefGoogle Scholar
  16. 16.
    Megibow AJ, Rusinek H, Lisi V, Bennett GL, Macari M, Israel GM, Krinsky GA (2002) Computed tomography diagnosis utilizing compressed image data: an ROC analysis using acute appendicitis as a model. J Digit Imaging 15:84–90PubMedCrossRefGoogle Scholar
  17. 17.
    Ko JP, Rusinek H, Naidich DP, McGuinness G, Rubinowitz AN, Leitman BS, Martino JM (2003) Wavelet compression of low-dose chest CT data: effect on lung nodule detection. Radiology 228:70–75PubMedCrossRefGoogle Scholar
  18. 18.
    Li F, Sone S, Takashima S, Kiyono K, Yang ZG, Hasegawa M, Kawakami S, Saito A, Hanamura K, Asakura K (2001) Effects of JPEG and wavelet compression of spiral low-dose ct images on detection of small lung cancers. Acta Radiol 42:156–160PubMedCrossRefGoogle Scholar
  19. 19.
    Ko JP, Chang J, Bomsztyk E, Babb JS, Naidich DP, Rusinek H (2005) Effect of CT image compression on computer-assisted lung nodule volume measurement. Radiology 237:83–88PubMedCrossRefGoogle Scholar
  20. 20.
    Ohgiya Y, Gokan T, Nobusawa H, Hirose M, Seino N, Fujisawa H, Baba M, Nagai K, Tanno K, Takeyama N, Munechika H (2003) Acute cerebral infarction: effect of JPEG compression on detection at CT. Radiology 227:124–127PubMedCrossRefGoogle Scholar
  21. 21.
    Zalis ME, Hahn PF, Arellano RS, Gazelle GS, Mueller PR (2001) CT colonography with teleradiology: effect of lossy wavelet compression on polyp detection-initial observations. Radiology 220:387–392PubMedGoogle Scholar
  22. 22.
    MacMahon H, Doi K, Sanada S, Montner SM, Giger ML, Metz CE, Nakamori N, Yin FF, Xu XW, Yonekawa H et al (1991) Data compression: effect on diagnostic accuracy in digital chest radiography. Radiology 178:175–179PubMedGoogle Scholar
  23. 23.
    Mori T, Nakata H (1994) Irreversible data compression in chest imaging using computed radiography: an evaluation. J Thorac Imaging 9:23–30PubMedGoogle Scholar
  24. 24.
    Savcenko V, Erickson BJ, Palisson PM, Persons KR, Manduca A, Hartman TE, Harms GF, Brown LR (1998) Detection of subtle abnormalities on chest radiographs after irreversible compression. Radiology 206:609–616PubMedGoogle Scholar
  25. 25.
    Kalyanpur A, Neklesa VP, Taylor CR, Daftary AR, Brink JA (2000) Evaluation of JPEG and wavelet compression of body CT images for direct digital teleradiologic transmission. Radiology 217:772–779PubMedGoogle Scholar
  26. 26.
    Ringl H, Schernthaner RE, Bankier AA, Weber M, Prokop M, Herold CJ, Schaefer-Prokop C (2006) JPEG2000 compression of thin-section CT images of the lung: effect of compression ratio on image quality. Radiology 240:869–877PubMedCrossRefGoogle Scholar
  27. 27.
    Cox JE, Muka E (1997) Factors affecting the selection of compression algorithms for projection radiography. Proc SPIE 3031:256–264CrossRefGoogle Scholar
  28. 28.
    Pilgram TK, Slone RM, Muka E, Cox JR, Blaine GJ (1998) Perceived fidelity of compressed and reconstructed radiological images: a preliminary exploration of compression, luminance, and viewing distance. J Digit Imaging 11:168–175PubMedCrossRefGoogle Scholar
  29. 29.
    Siddiqui KM, Siegel EL, Reiner BI, Johnson JP, Crave O, Nadar M (2004) Improved image compression at various slice thickness for multi-slice CT using 3D JPEG2000 (part 2) in comparison with conventional 2D compression. Society for Computer Applications in Radiology Scientific Abstracts 87–88Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Kyoung Ho Lee
    • 1
  • Young Hoon Kim
    • 1
    Email author
  • Bo Hyoung Kim
    • 1
  • Kil Joong Kim
    • 1
  • Tae Jung Kim
    • 1
  • Hyuk Jung Kim
    • 3
  • Seokyung Hahn
    • 2
  1. 1.Department of RadiologySeoul National University Bundang HospitalGyeonggi-doSouth Korea
  2. 2.Medical Research Collaborating CenterSeoul National University HospitalSeoulSouth Korea
  3. 3.Department of RadiologySeoul Medical CenterSeoulKorea

Personalised recommendations