Advertisement

European Radiology

, Volume 17, Issue 6, pp 1490–1497 | Cite as

Relationship between DCE-MRI morphological and functional features and histopathological characteristics of breast cancer

  • Filippo Montemurro
  • Laura MartincichEmail author
  • Ivana Sarotto
  • Ilaria Bertotto
  • Riccardo Ponzone
  • Lisa Cellini
  • Stefania Redana
  • Piero Sismondi
  • Massimo Aglietta
  • Daniele Regge
Breast

Abstract

We studied whether dynamic contrast-enhanced MRI (DCE-MRI) could identify histopathological characteristics of breast cancer. Seventy-five patients with breast cancer underwent DCE-MRI followed by core biopsy. DCE-MRI findings were evaluated following the scoring system published by Fischer in 1999. In this scoring system, five DCE-MRI features, three morphological (shape, margins, enhancement kinetic) and two functional (initial peak of signal intensity (SI) increase and behavior of signal intensity curve), are defined by 14 parameters. Each parameter is assigned points ranging from 0 to 1 or 0 to 2, with higher points for those that are more likely to be associated with malignancy. The sum of all the points defines the degree of suspicion of malignancy, with a score 0 representing the lowest and 8 the highest degree of suspicion. Associations between DCE-MRI features and tumor histopathological characteristics assessed on core biopsies (histological type, grading, estrogen and progesterone receptor status, Ki67 and HER2 status) were studied by contingency tables and logistic regression analysis. We found a significant inverse association between the Fischer’s score and HER2-overexpression (odds ratio-OR 0.608, p = 0.02). Based on our results, we suggest that lesions with intermediate-low suspicious DCE-MRI parameters may represent a subset of tumor with poor histopathological characteristics.

Keywords

Magnetic resonance imaging Contrast media Breast neoplasms Pathology HER2 

References

  1. 1.
    Sardanelli F, Lozzelli A, Fausto A (2003) MR imaging of the breast: indications, established technique, and new directions. Eur Radiol 13(Suppl 3):N28–N36PubMedCrossRefGoogle Scholar
  2. 2.
    Esserman L, Hylton N, George T, Weidner N (1999) Contrast-Enhanced Magnetic Resonance Imaging to Assess Tumor Histopathology and Angiogenesis in Breast Carcinoma. Breast J 5:13–21PubMedCrossRefGoogle Scholar
  3. 3.
    Esserman L, Hylton N, Yassa L, Barclay J, Frankel S, Sickles E (1999) Utility of magnetic resonance imaging in the management of breast cancer: evidence for improved preoperative staging. J Clin Oncol 17:110–119PubMedGoogle Scholar
  4. 4.
    Szabo BK, Aspelin P, Kristoffersen WM, Tot T, Bone B (2003) Invasive breast cancer: correlation of dynamic MR features with prognostic factors. Eur Radiol 13:2425–2435 DOI 10.1007/s00330-003-2000-y PubMedCrossRefGoogle Scholar
  5. 5.
    Szabo BK, Aspelin P, Wiberg MK, Bone B (2003) Dynamic MR imaging of the breast. Analysis of kinetic and morphologic diagnostic criteria. Acta Radiol 44:379–386PubMedCrossRefGoogle Scholar
  6. 6.
    Montemurro F, Martincich L, De Rosa G et al (2005) Dynamic contrast-enhanced MRI and sonography in patients receiving primary chemotherapy for breast cancer. Eur Radiol 15:1224–1234 DOI 10.1007/s00330-005-2656-6 PubMedCrossRefGoogle Scholar
  7. 7.
    Martincich L, Montemurro F, De Rosa G et al (2004) Monitoring response to primary chemotherapy in breast cancer using dynamic contrast-enhanced magnetic resonance imaging. Breast Cancer Res Treat 83:67–76PubMedCrossRefGoogle Scholar
  8. 8.
    Rieber A, Brambs HJ, Gabelmann A, Heilmann V, Kreienberg R, Kuhn T (2002) Breast MRI for monitoring response of primary breast cancer to neo-adjuvant chemotherapy. Eur Radiol 12:1711–1712 DOI 10.1007/s00330-001-1233-x PubMedCrossRefGoogle Scholar
  9. 9.
    Abraham DC, Jones RC, Jones SE et al (1996) Evaluation of neoadjuvant chemotherapeutic response of locally advanced breast cancer by magnetic resonance imaging. Cancer 78:91–100PubMedCrossRefGoogle Scholar
  10. 10.
    Morakkabati-Spitz N, Leutner C, Schild H, Traeber F, Kuhl C (2005) Diagnostic usefulness of segmental and linear enhancement in dynamic breast MRI. Eur Radiol 15:2010–2011 DOI 10.1007/s00330-005-2755-4 PubMedCrossRefGoogle Scholar
  11. 11.
    Hawighorst H, Libicher M, Knopp MV, Moehler T, Kauffmann GW, Kaick G (1999) Evaluation of angiogenesis and perfusion of bone marrow lesions: role of semiquantitative and quantitative dynamic MRI. J Magn Reson Imaging 10:286–294PubMedCrossRefGoogle Scholar
  12. 12.
    Hayes C, Padhani AR, Leach MO (2002) Assessing changes in tumour vascular function using dynamic contrast-enhanced magnetic resonance imaging. NMR Biomed 15:154–163PubMedCrossRefGoogle Scholar
  13. 13.
    Furman-Haran E, Schechtman E, Kelcz F, Kirshenbaum K, Degani H (2005) Magnetic resonance imaging reveals functional diversity of the vasculature in benign and malignant breast lesions. Cancer 104:708–718 DOI 10.1002/cncr.21225 PubMedCrossRefGoogle Scholar
  14. 14.
    Preda A, Novikov V, Moglich M et al (2005) Magnetic resonance characterization of tumor microvessels in experimental breast tumors using a slow clearance blood pool contrast agent (carboxymethyldextran-A2-Gd-DOTA) with histopathological correlation. Eur Radiol 15:2268–2278 DOI 10.1007/s00330-005-2823-9 PubMedCrossRefGoogle Scholar
  15. 15.
    Fischer U, Kopka L, Grabbe E (1999) Breast carcinoma: effect of preoperative contrast-enhanced MR imaging on the therapeutic approach. Radiology 213:881–888PubMedGoogle Scholar
  16. 16.
    Malich A, Fischer DR, Wurdinger S, Boettcher J, Marx C, Facius M, Kaiser WA (2005) Potential MRI interpretation model: differentiation of benign from malignant breast masses. AJR Am J Roentgenol 185:964–970 http://dx.doi.org/10.2214/AJR.04.1073 PubMedCrossRefGoogle Scholar
  17. 17.
    Goldhirsch A, Glick JH, Gelber RD, Coates AS, Thurlimann B, Senn HJ (2005) Meeting highlights: international expert consensus on the primary therapy of early breast cancer 2005. Ann Oncol 16:1569–1583 http://dx.doi.org/10.1093/annonc/mdi PubMedCrossRefGoogle Scholar
  18. 18.
    Montemurro F, Redana S, Valabrega G, Aglietta M (2005) Controversies in breast cancer: adjuvant and neoadjuvant therapy. Expert Opin Pharmacother 6:1055–1072 http://dx.doi.org/10.1517/14656566.6.7.1055 PubMedCrossRefGoogle Scholar
  19. 19.
    Piccart-Gebhart MJ, Procter M, Leyland-Jones B et al (2005) Trastuzumab after Adjuvant Chemotherapy in HER2-Positive Breast Cancer. N Engl J Med 353:1659–1672 http://dx.doi.org/10.1056/NEJMoa052306 PubMedCrossRefGoogle Scholar
  20. 20.
    Romond EH, Perez EA, Bryant J et al (2005) Trastuzumab plus Adjuvant Chemotherapy for Operable HER2-Positive Breast Cancer. N Engl J Med 353:1673–1684 http://dx.doi.org/10.1056/NEJMoa052122 PubMedCrossRefGoogle Scholar
  21. 21.
    Cheung YC, Chen SC, Su MY et al (2003) Monitoring the size and response of locally advanced breast cancers to neoadjuvant chemotherapy (weekly paclitaxel and epirubicin) with serial enhanced MRI. Breast Cancer Res Treat 78:51–58PubMedCrossRefGoogle Scholar
  22. 22.
    Ellis CW (1987) Grading of invasive carcinoma of the breast. In: Page DL, Anderson TJ (eds) Diagnostic histopathology of the breast. Churchill Livingstone, Edinburgh, pp 311–330Google Scholar
  23. 23.
    Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177–182PubMedCrossRefGoogle Scholar
  24. 24.
    Kaas R, Kroger R, Hendriks JKCL et al (2004) The signifiance of circumscribed malignant mammographic masses in the surveillance of BRCA 1/2 gene mutation carriers. Eur Radiol 14:1647–1653 http://dx.doi.org/10.1007/s00330-004-2307-3 PubMedCrossRefGoogle Scholar
  25. 25.
    Tabar L, Tony Chen HH, Amy Yen MF et al (2004) Mammographic tumor features can predict long-term outcomes reliably in women with 1–14-mm invasive breast carcinoma. Cancer 101:1745–1759PubMedCrossRefGoogle Scholar
  26. 26.
    Tofts PS, Berkowitz B, Schnall MD (1995) Quantitative analysis of dynamic Gd-DTPA enhancement in breast tumors using a permeability model. Magn Reson Med 33:564–568PubMedCrossRefGoogle Scholar
  27. 27.
    Knopp MV, von Tengg-Kobligk H, Choyke PL (2003) Functional magnetic resonance imaging in oncology for diagnosis and therapy monitoring. Mol Cancer Ther 2:419–426PubMedGoogle Scholar
  28. 28.
    Stoutjesdijk MJ, Futterer JJ, Boetes C, van Die LE, Jager G, Barentsz JO (2005) Variability in the description of morphologic and contrast enhancement characteristics of breast lesions on magnetic resonance imaging. Invest Radiol 40:355–362PubMedCrossRefGoogle Scholar
  29. 29.
    Cahill RA, Walsh D, Landers RJ, Watson RG (2006) Preoperative profiling of symptomatic breast cancer by diagnostic core biopsy. Ann Surg Oncol 13:45–51 http://dx.doi.org/10.1245/ASO.2006.03.047 PubMedCrossRefGoogle Scholar
  30. 30.
    Burge CN, Chang HR, Apple SK (2006) Do the histologic features and results of breast cancer biomarker studies differ between core biopsy and surgical excision specimens? Breast 15:167–172 http://dx./doi.org/10.1016/j.breast.2005.06.004 PubMedCrossRefGoogle Scholar
  31. 31.
    Usami S, Moriya T, Kasajima A, Suzuki A, Ishida T, Sasano H, Ohuchi N (2005) Pathological aspects of core needle biopsy for non-palpable breast lesions. Breast Cancer 12:272–278 http://dx.doi.org/10.2325/jbcs.12.272 PubMedCrossRefGoogle Scholar
  32. 32.
    Harris GC, Denley HE, Pinder SE, Lee AH, Ellis IO, Elston CW, Evans A (2003) Correlation of histologic prognostic factors in core biopsies and therapeutic excisions of invasive breast carcinoma. Am J Surg Pathol 27:11–15PubMedCrossRefGoogle Scholar
  33. 33.
    Mussurakis S, Buckley DL, Horsman A (1997) Dynamic MR imaging of invasive breast cancer: correlation with tumour grade and other histological factors. Br J Radiol 70:446–451PubMedGoogle Scholar
  34. 34.
    Matsubayashi R, Matsuo Y, Edakuni G, Satoh T, Tokunaga O, Kudo S (2000) Breast masses with peripheral rim enhancement on dynamic contrast-enhanced MR images: correlation of MR findings with histologic features and expression of growth factors. Radiology 217:841–848PubMedGoogle Scholar
  35. 35.
    Tuncbilek N, Karakas HM, Okten OO (2005) Dynamic magnetic resonance imaging in determining histopathological prognostic factors of invasive breast cancers. Eur J Radiol 53:199–205 http://dx.doi.org/10.1016/j.ejrad.2004.04.012 PubMedCrossRefGoogle Scholar
  36. 36.
    Fischer DR, Wurdinger S, Boettcher J, Malich A, Kaiser WA (2005) Further signs in the evaluation of magnetic resonance mammography: a retrospective study. Invest Radiol 40:430–435PubMedCrossRefGoogle Scholar
  37. 37.
    Kuhl CK, Kuhn W, Schild H (2005) Management of women at high risk for breast cancer: new imaging beyond mammography. Breast 14:480–486 http://dx.doi.org/10.1016/j.breast.2005.08.005 PubMedCrossRefGoogle Scholar
  38. 38.
    Artemov D, Mori N, Ravi R, Bhujwalla ZM (2003) Magnetic resonance molecular imaging of the HER-2/neu receptor. Cancer Res 63:2723–2727PubMedGoogle Scholar
  39. 39.
    Artemov D, Mori N, Okollie B, Bhujwalla ZM (2003) MR molecular imaging of the Her-2/neu receptor in breast cancer cells using targeted iron oxide nanoparticles. Magn Reson Med 49:403–408 http://dx.doi.org/10.1002/mrm.10406 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Filippo Montemurro
    • 1
  • Laura Martincich
    • 2
    Email author
  • Ivana Sarotto
    • 4
  • Ilaria Bertotto
    • 2
  • Riccardo Ponzone
    • 5
  • Lisa Cellini
    • 2
  • Stefania Redana
    • 1
  • Piero Sismondi
    • 5
  • Massimo Aglietta
    • 1
  • Daniele Regge
    • 3
  1. 1.Unit of Medical OncologyInstitute for Cancer Research and TreatmentCandioloItaly
  2. 2.Unit of Diagnostic ImagingInstitute for Cancer Research and TreatmentCandioloItaly
  3. 3.Institute for Science Interchange FoundationTorinoItaly
  4. 4.Unit of Surgical PathologyInstitute for Cancer Research and TreatmentCandioloItaly
  5. 5.Unit of Gynaecological OncologyInstitute for Cancer Research and TreatmentCandioloItaly

Personalised recommendations