European Radiology

, Volume 17, Issue 6, pp 1483–1489 | Cite as

Quantification of bronchial dimensions at MDCT using dedicated software

  • P. Y. BrilletEmail author
  • C. I. Fetita
  • C. Beigelman-Aubry
  • A. Saragaglia
  • D. Perchet
  • F. Preteux
  • P. A. Grenier


This study aimed to assess the feasibility of quantification of bronchial dimensions at MDCT using dedicated software (BronCare). We evaluated the reliability of the software to segment the airways and defined criteria ensuring accurate measurements. BronCare was applied on two successive examinations in 10 mild asthmatic patients. Acquisitions were performed at pneumotachographically controlled lung volume (65% TLC), with reconstructions focused on the right lung base. Five validation criteria were imposed: (1) bronchus type: segmental and subsegmental; (2) lumen area (LA)>4 mm2; (3) bronchus length (Lg) > 7 mm; (4) confidence index - giving the percentage of the bronchus not abutted by a vessel - (CI) >55% for validation of wall area (WA) and (5) a minimum of 10 contiguous cross-sectional images fulfilling the criteria. A complete segmentation procedure on both acquisitions made possible an evaluation of LA and WA in 174/223 (78%) and 171/174 (98%) of bronchi, respectively. The validation criteria were met for 56/69 (81%) and for 16/69 (23%) of segmental bronchi and for 73/102 (72%) and 58/102 (57%) of subsegmental bronchi, for LA and WA, respectively. In conclusion, BronCare is reliable to segment the airways in clinical practice. The proposed criteria seem appropriate to select bronchi candidates for measurement.


Bronchial diseases Software Quantitative evaluation Multi-detector row CT 



The authors thank the ECR for its financial support through the R & E Fund grants.


  1. 1.
    Grenier PA, Beigelman-Aubry C, Fetita C et al (2002) New frontiers in CT imaging of airway disease. Eur Radiol 12:1022–1044PubMedCrossRefGoogle Scholar
  2. 2.
    de Jong PA, Muller NL, Pare PD, Coxson HO (2005) Computed tomographic imaging of the airways: relationship to structure and function. Eur Respir J 26:140–152PubMedCrossRefGoogle Scholar
  3. 3.
    Dalal PU, Hansell DM (2006) High-resolution computed tomography of the lungs: the borderlands of normality. Eur Radiol 16:771–780PubMedCrossRefGoogle Scholar
  4. 4.
    Niimi A, Matsumoto H, Amitani R et al (2004) Effect of short-term treatment with inhaled corticosteroid on airway wall thickening in asthma. Am J Med 116:725–731PubMedCrossRefGoogle Scholar
  5. 5.
    Nakano Y, Wong JC, de Jong PA et al (2005) The prediction of small airway dimensions using computed tomography. Am J Respir Crit Care Med 171:142–146PubMedCrossRefGoogle Scholar
  6. 6.
    Berger P, Perot V, Desbarats P et al (2005) Airway wall thickness in cigarette smokers: quantitative thin-section CT assessment. Radiology 235:1055–1064PubMedCrossRefGoogle Scholar
  7. 7.
    King GG, Muller NL, Whittall KP, Xiang QS, Pare PD (2000) An analysis algorithm for measuring airway lumen and wall areas from high-resolution computed tomographic data. Am J Respir Crit Care Med 161:574–580PubMedGoogle Scholar
  8. 8.
    Fetita CI, Preteux F, Beigelman-Aubry C, Grenier P (2004) Pulmonary airways: 3-D reconstruction from multislice CT and clinical investigation. IEEE Trans Med Imaging 23:1353–1364PubMedCrossRefGoogle Scholar
  9. 9.
    Perchet D, Fetita C, Vial L et al (2004) Virtual investigation of pulmonary airways in volumetric computed tomography. Comp Anim Virtual Worlds 15:361–376CrossRefGoogle Scholar
  10. 10.
    Saragaglia A, Fetita C, Prêteux F, Brillet PY, Grenier PA (2005) Accurate 3D quantification of bronchial parameters in MDCT. Proceedings SPIE 5916:323–334Google Scholar
  11. 11.
    Beigelman-Aubry C, Capderou A, Grenier PA et al (2002) Mild intermittent asthma: CT assessment of bronchial cross-sectional area and lung attenuation at controlled lung volume. Radiology 223:181–187PubMedCrossRefGoogle Scholar
  12. 12.
    Boyden E (1961) The nomenclature of the bronchopulmonary segments and their blood supply. Dis Chest 39:1–6Google Scholar
  13. 13.
    Remy-Jardin M, Duyck P, Remy J et al (1995) Hilar lymph nodes: identification with spiral CT and histologic correlation. Radiology 196:387–394PubMedGoogle Scholar
  14. 14.
    Reinhardt JM, D’Souza ND, Hoffman EA (1997) Accurate measurement of intrathoracic airways. IEEE Trans Med Imaging 16:820–827PubMedCrossRefGoogle Scholar
  15. 15.
    Matsuoka S, Kurihara Y, Nakajima Y et al (2005) Serial change in airway lumen and wall thickness at thin-section CT in asymptomatic subjects. Radiology 234:595–603PubMedCrossRefGoogle Scholar
  16. 16.
    King GG, Muller NL, Pare PD (1999) Evaluation of airways in obstructive pulmonary disease using high-resolution computed tomography. Am J Respir Crit Care Med 159:992–1004PubMedGoogle Scholar
  17. 17.
    Aykac D, Hoffman EA, McLennan G, Reinhardt JM (2003) Segmentation and analysis of the human airway tree from three-dimensional X-ray CT images. IEEE Trans Med Imaging 22:940–950PubMedCrossRefGoogle Scholar
  18. 18.
    Brown RH, Mitzner W (2003) Understanding airway pathophysiology with computed tomograpy. J Appl Physiol 95:854–862PubMedGoogle Scholar
  19. 19.
    West J (2001) Pulmonary physiology and pathophysiology. An integrated case-based approach. Baltimore, Lippincott Williams & Wilkins, pp 56–69Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • P. Y. Brillet
    • 1
    Email author
  • C. I. Fetita
    • 2
  • C. Beigelman-Aubry
    • 3
  • A. Saragaglia
    • 2
  • D. Perchet
    • 2
  • F. Preteux
    • 2
  • P. A. Grenier
    • 3
  1. 1.Service de radiologie, Assistance Publique–Hôpitaux de Paris, Hôpital AvicenneUniversité Léonard de Vinci-Paris XIIIBobignyFrance
  2. 2.ARTEMIS DepartmentInstitut National des TélécommunicationsEvryFrance
  3. 3.Service de radiologie, Assistance Publique–Hôpitaux de Paris, Hôpital Pitié-SalpêtrièreUniversité Pierre et Marie Curie–Paris VIParisFrance

Personalised recommendations