European Radiology

, Volume 17, Issue 6, pp 1394–1402 | Cite as

Effects of injection rate and dose on image quality in time-resolved magnetic resonance angiography (MRA) by using 1.0M contrast agents

  • Harald KramerEmail author
  • Henrik J. Michaely
  • Martin Requardt
  • Martin Rohrer
  • Scott Reeder
  • Maximilian F. Reiser
  • Stefan O. Schoenberg
Magnetic Resonance


In time-resolved MRA (TR MRA), injection parameters and contrast agent (CA) dose are important factors influencing image quality. In this study, three different injection schemes with different CA volumes were evaluated in 12 healthy volunteers. Injection rates between 0.2 and 0.8 ml/s were evaluated with CA volumes of 10 and 20 ml. To measure circulatory parameters, cine cardiac MRI was performed before each exam. Spatial resolution could be reduced to 2×1.4×2 mm3, temporal resolution was 2.25 s/frame. To exclude signal saturation at high CA concentrations, a phantom with fixed CA concentrations was placed in the field of view. SNR was measured, and the area under the curve of the arterial signal of the different injection schemes was calculated. Results showed the largest diagnostic window at a relatively slow injection rate of 0.4 ml/s and a CA volume of 10 ml. Circulatory parameters have an important impact on CA arrival, so delay times have to be set depending on these parameters.


MRA Time-resolved contrast-enhanced MRA Injection rate 


  1. 1.
    Parfrey P (1989) Contrast material induced renal failure in patients with diabetes mellitus renal insufficiency, or both: a prospective controlled study. N Eng J Med 320:143–149CrossRefGoogle Scholar
  2. 2.
    Du J et al (2003) SNR improvement for multiinjection time-resolved high-resolution CE-MRA of the peripheral vasculature. Magn Reson Med 49(5):909–917PubMedCrossRefGoogle Scholar
  3. 3.
    Ruehm SG et al (2000) Pelvic and lower extremity arterial imaging: diagnostic performance of three-dimensional contrast-enhanced MR angiography. AJR Am J Roentgenol 174(4):1127–1135PubMedGoogle Scholar
  4. 4.
    Schoenberg SO et al (2005) High-spatial-resolution MR angiography of renal arteries with integrated parallel acquisitions: comparison with digital subtraction angiography and US. Radiology 235(2):687–698PubMedCrossRefGoogle Scholar
  5. 5.
    Hany TF et al (2001) Aorta and runoff vessels: single-injection MR angiography with automated table movement compared with multiinjection time-resolved MR angiography-initial results. Radiology 221(1):266–272PubMedCrossRefGoogle Scholar
  6. 6.
    Du J et al (2004) Contrast-enhanced peripheral magnetic resonance angiography using time-resolved vastly undersampled isotropic projection reconstruction. J Magn Reson Imaging 20(5):894–900PubMedCrossRefGoogle Scholar
  7. 7.
    Swan JS et al (2002) Time-resolved three-dimensional contrast-enhanced MR angiography of the peripheral vessels. Radiology 225(1):43–52PubMedCrossRefGoogle Scholar
  8. 8.
    Korosec FR et al (1996) Time-resolved contrast-enhanced 3D MR angiography. Magn Reson Med 36(3):345–351PubMedCrossRefGoogle Scholar
  9. 9.
    Fink C et al (2005) Time-resolved contrast-enhanced three-dimensional magnetic resonance angiography of the chest: combination of parallel imaging with view sharing (TREAT). Invest Radiol 40(1):40–48PubMedGoogle Scholar
  10. 10.
    Gregor M et al (2002) Peripheral run-off CE-MRA with a 1.0 molar gadolinium chelate (Gadovist) with intraarterial DSA comparison. Acad Radiol 9(Suppl 2):S398–S400PubMedCrossRefGoogle Scholar
  11. 11.
    Schafer FK et al (2003) First clinical results in a study of contrast enhanced magnetic resonance angiography with the 1.0 molar gadobutrol in peripheral arterial occlusive disease-comparison to intraarterial DSA. Rofo 175(4):556–564PubMedGoogle Scholar
  12. 12.
    Carroll TJ et al (2001) The effect of injection rate on time-resolved contrast-enhanced peripheral MRA. J Magn Reson Imaging 14(4):401–410PubMedCrossRefGoogle Scholar
  13. 13.
    Korosec FR et al (1999) Contrast-enhanced MR angiography of the carotid bifurcation. J Magn Reson Imaging 10(3):317–325PubMedCrossRefGoogle Scholar
  14. 14.
    Watts R et al (2002) Recessed elliptical-centric view-ordering for contrast-enhanced 3D MR angiography of the carotid arteries. Magn Reson Med 48(3):419–424PubMedCrossRefGoogle Scholar
  15. 15.
    Hansen MS et al (2004) Accelerated dynamic Fourier velocity encoding by exploiting velocity-spatio-temporal correlations. Magma 17(2):86–94PubMedCrossRefGoogle Scholar
  16. 16.
    Tsao J, Boesiger P, Pruessmann KP (2003) k-t BLAST and k-t SENSE: dynamic MRI with high frame rate exploiting spatiotemporal correlations. Magn Reson Med 50(5):1031–1042PubMedCrossRefGoogle Scholar
  17. 17.
    Henkelman RM (1985) Measurement of signal intensities in the presence of noise in MR images. Med Phys 12(2):232–233PubMedCrossRefGoogle Scholar
  18. 18.
    Constantinides CD, Atalar E, McVeigh ER (1997) Signal-to-noise measurements in magnitude images from NMR phased arrays. Magn Reson Med 38(5):852–857PubMedCrossRefGoogle Scholar
  19. 19.
    Reeder SB et al (2005) Practical approaches to the evaluation of signal-to-noise ratio performance with parallel imaging: application with cardiac imaging and a 32-channel cardiac coil. Magn Reson Med 54(3):748–754PubMedCrossRefGoogle Scholar
  20. 20.
    Alfakih K et al (2003) Normal human left and right ventricular dimensions for MRI as assessed by turbo gradient echo and steady-state free precession imaging sequences. J Magn Reson Imaging 17(3):323–329PubMedCrossRefGoogle Scholar
  21. 21.
    Leiner T et al (2005) Contemporary imaging techniques for the diagnosis of renal artery stenosis. Eur Radiol 15(11):2219–2229PubMedCrossRefGoogle Scholar
  22. 22.
    Finn JP et al (2002) Thorax: low-dose contrast-enhanced three-dimensional MR angiography with subsecond temporal resolution-initial results. Radiology 224(3):896–904PubMedCrossRefGoogle Scholar
  23. 23.
    Schmitt R et al (2005) Comprehensive MR angiography of the lower limbs: a hybrid dual-bolus approach including the pedal arteries. Eur Radiol 15(12):2513–2524PubMedCrossRefGoogle Scholar
  24. 24.
    Prince MR, et al (2002) Contrast material travel times in patients undergoing peripheral MR angiography. Radiology 224(1):55–61PubMedCrossRefGoogle Scholar
  25. 25.
    Wang Y, et al (2002) Bolus arterial-venous transit in the lower extremity and venous contamination in bolus chase three-dimensional magnetic resonance angiography. Invest Radiol 37(8):458–463PubMedCrossRefGoogle Scholar
  26. 26.
    Huston J III et al (2001) Carotid artery: elliptic centric contrast-enhanced MR angiography compared with conventional angiography. Radiology 218(1):138–143PubMedGoogle Scholar
  27. 27.
    Hentsch A et al (2003) Gadobutrol-enhanced moving-table magnetic resonance angiography in patients with peripheral vascular disease: a prospective, multi-centre blinded comparison with digital subtraction angiography. Eur Radiol 13(9):2103–2114PubMedCrossRefGoogle Scholar
  28. 28.
    Ziyeh S et al (2005) Dynamic 3D MR angiography of intra- and extracranial vascular malformations at 3T: a technical note. AJNR Am J Neuroradiol 26(3):630–634PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Harald Kramer
    • 1
    • 5
    Email author
  • Henrik J. Michaely
    • 1
  • Martin Requardt
    • 2
  • Martin Rohrer
    • 3
  • Scott Reeder
    • 4
  • Maximilian F. Reiser
    • 1
  • Stefan O. Schoenberg
    • 1
  1. 1.Institute of Clinical RadiologyUniversity Hospital of Munich, Ludwig Maximilian University of MunichMunichGermany
  2. 2.Siemens Medical SolutionsErlangenGermany
  3. 3.Schering AGBerlinGermany
  4. 4.Department of RadiologyUniversity of WisconsinMadisonUSA
  5. 5.University Hospital of Munich, Campus GrosshadernLudwig Maximilian UniversityMunichGermany

Personalised recommendations