Advertisement

European Radiology

, Volume 16, Issue 12, pp 2728–2738 | Cite as

Cardiac stress MR imaging with dobutamine

  • K. Strach
  • C. Meyer
  • H. Schild
  • T. SommerEmail author
Cardiac

Abstract

Stress testing for detection of ischemia-induced wall-motion abnormalities has become a mainstay for noninvasive diagnosis and risk stratification of patients with suspected coronary artery disease (CAD). Recent technical developments in magnetic resonance imaging (MRI), including the adoption of balanced steady-state free precession (b-SSFP) sequences—preferentially in combination with parallel imaging techniques—have led to a significant reduction of imaging time and improved patient safety. The stress protocol includes application of high-dose dobutamine (up to 40 μg/kg/min) combined with fractionated atropine (up to a maximal dose of 1.0 mg). High-dose dobutamine stress MRI revealed good sensitivity (83–96%) and specificity (80–100%) for detection of significant CAD. Myocardial tagging methods have been shown to further increase sensitivity for CAD detection. Severe complications (sustained tachycardia, ventricular fibrillation, myocardial infarction, cardiogenic shock) are rare but may be expected in 0.1–0.3% of patients. Dobutamine stress MRI has emerged as a reliable and safe clinical alternative for noninvasive assessment of CAD. New pulse sequences, such as real-time imaging, might obviate the need for breath holding and electrocardiogram (ECG) triggering in patients with severe dyspnoea and cardiac arrhythmias, which may further improve the clinical impact and acceptance of stress MRI in the future.

Keywords

Heart Ischemia Magnetic resonance (MR) Cine study Dobutamine stress testing 

Notes

Acknowledgements

The authors thank Harold Litt, MD and Adam Bernstein, MD for helpful discussions and advice.

References

  1. 1.
    Fuster V (1999) Epidemic of cardiovascular disease and stroke: the three main challenges. Presented at the 71st scientific sessions of the American Heart Association. Dallas, Texas. Circulation 99(9):1132–1137Google Scholar
  2. 2.
    Pons-Llado G (2005) Assessment of cardiac function by CMR. Eur Radiol 15(Suppl 2):B23–B32CrossRefPubMedGoogle Scholar
  3. 3.
    Pennell DJ et al (1990) Dipyridamole magnetic resonance imaging: a comparison with thallium-201 emission tomography. Br Heart J 64(6):362–369PubMedGoogle Scholar
  4. 4.
    Pennell DJ et al (1992) Magnetic resonance imaging during dobutamine stress in coronary artery disease. Am J Cardiol 70(1):34–40CrossRefPubMedGoogle Scholar
  5. 5.
    Baer FM et al (1992) Feasibility of high-dose dipyridamole-magnetic resonance imaging for detection of coronary artery disease and comparison with coronary angiography. Am J Cardiol 69(1):51–56CrossRefPubMedGoogle Scholar
  6. 6.
    Nesto RW, Kowalchuk GJ (1987) The ischemic cascade: temporal sequence of hemodynamic, electrocardiographic and symptomatic expressions of ischemia. Am J Cardiol 59(7):23C–30CCrossRefPubMedGoogle Scholar
  7. 7.
    Becher H et al (2004) BSE procedure guidelines for the clinical application of stress echocardiography, recommendations for performance and interpretation of stress echocardiography: a report of the British Society of Echocardiography Policy Committee. Heart 90(Suppl 6):vi23–vi30CrossRefPubMedGoogle Scholar
  8. 8.
    Fletcher GF et al (2001) Exercise standards for testing and training: a statement for healthcare professionals from the American Heart Association. Circulation 104(14):1694–1740PubMedGoogle Scholar
  9. 9.
    Nagel E et al (2001) Stress cardiovascular magnetic resonance: consensus panel report. J Cardiovasc Magn Reson 3(3):267–281CrossRefPubMedGoogle Scholar
  10. 10.
    Ling LH et al (1996) Atropine augmentation in dobutamine stress echocardiography: role and incremental value in a clinical practice setting. J Am Coll Cardiol 28(3):551–557CrossRefPubMedGoogle Scholar
  11. 11.
    Arsenault M et al (2005) Anginal threshold between stress tests: exercise versus dobutamine stress echocardiography. Med Sci Sports Exerc 37(1):18–23CrossRefPubMedGoogle Scholar
  12. 12.
    Elhendy A et al (1999) The functional significance of chronotropic incompetence during dobutamine stress test. Heart 81(4):398–403PubMedGoogle Scholar
  13. 13.
    Kuijpers D et al (2004) Dobutamine stress MRI. Part I. Safety and feasibility of dobutamine cardiovascular magnetic resonance in patients suspected of myocardial ischemia. Eur Radiol 14(10):1823–1828PubMedCrossRefGoogle Scholar
  14. 14.
    Picano E et al (1994) Safety and tolerability of dobutamine-atropine stress echocardiography: a prospective, multicentre study. Echo Dobutamine International Cooperative Study Group. Lancet 344(8931):1190–1192CrossRefPubMedGoogle Scholar
  15. 15.
    Secknus MA, Marwick TH (1997) Evolution of dobutamine echocardiography protocols and indications: safety and side effects in 3,011 studies over 5 years. J Am Coll Cardiol 29(6):1234–1240CrossRefPubMedGoogle Scholar
  16. 16.
    Wahl A et al (2004) Safety and feasibility of high-dose dobutamine-atropine stress cardiovascular magnetic resonance for diagnosis of myocardial ischaemia: experience in 1000 consecutive cases. Eur Heart J 25(14):1230–1236CrossRefPubMedGoogle Scholar
  17. 17.
    Cortigiani L et al (2001) Safety, feasibility, and prognostic implications of pharmacologic stress echocardiography in 1482 patients evaluated in an ambulatory setting. Am Heart J 141(4):621–629CrossRefPubMedGoogle Scholar
  18. 18.
    Previtali M et al (1991) Dobutamine versus dipyridamole echocardiography in coronary artery disease. Circulation 83(5 Suppl):III27–III31PubMedGoogle Scholar
  19. 19.
    Beleslin BD et al (1994) Stress echocardiography in the detection of myocardial ischemia. Head-to-head comparison of exercise, dobutamine, and dipyridamole tests. Circulation 90(3):1168–1176PubMedGoogle Scholar
  20. 20.
    Ostojic M et al (1994) Dipyridamole-dobutamine echocardiography: a novel test for the detection of milder forms of coronary artery disease. J Am Coll Cardiol 23(5):1115–1122PubMedCrossRefGoogle Scholar
  21. 21.
    Dagianti A et al (1995) Stress echocardiography: comparison of exercise, dipyridamole and dobutamine in detecting and predicting the extent of coronary artery disease. J Am Coll Cardiol 26(1):18–25CrossRefPubMedGoogle Scholar
  22. 22.
    Salustri A et al (1992) Pharmacological stress echocardiography in the diagnosis of coronary artery disease and myocardial ischaemia: a comparison between dobutamine and dipyridamole. Eur Heart J 13(10):1356–1362PubMedGoogle Scholar
  23. 23.
    Baer FM et al (1993) Identification of hemodynamically significant coronary artery stenoses by dipyridamole-magnetic resonance imaging and 99mTc-methoxyisobutyl-isonitrile-SPECT. Int J Card Imaging 9(2):133–145CrossRefPubMedGoogle Scholar
  24. 24.
    Paetsch I et al (2004) Comparison of dobutamine stress magnetic resonance, adenosine stress magnetic resonance, and adenosine stress magnetic resonance perfusion. Circulation 110(7):835–842CrossRefPubMedGoogle Scholar
  25. 25.
    Oshinski JN, Frerichs F, Doyle JA et al (1997) Exercise stress measurements of cardiac performance using an MR compatible cycle ergometer. In: Int Soc Magn Reson MedGoogle Scholar
  26. 26.
    Presti CF, Armstrong WF, Feigenbaum H (1988) Comparison of echocardiography at peak exercise and after bicycle exercise in evaluation of patients with known or suspected coronary artery disease. J Am Soc Echocardiogr 1(2):119–126PubMedGoogle Scholar
  27. 27.
    Geleijnse ML, Fioretti PM, Roelandt JR (1997) Methodology, feasibility, safety and diagnostic accuracy of dobutamine stress echocardiography. J Am Coll Cardiol 30(3):595–606CrossRefPubMedGoogle Scholar
  28. 28.
    Wahl A et al (2004) High-dose dobutamine-atropine stress cardiovascular MR imaging after coronary revascularization in patients with wall motion abnormalities at rest. Radiology 233(1):210–216PubMedGoogle Scholar
  29. 29.
    Kerber R (1988) Echocardiography in coronary artery disease. Futura, Mount Kisco, NYGoogle Scholar
  30. 30.
    Cerqueira et al (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Int J Cardiovasc Imaging 18(1):539–542PubMedGoogle Scholar
  31. 31.
    Kuijpers D (2005) Diagnosis of coronary artery disease with dobutamine-stress MRI. Eur Radiol 15(Suppl 2):B48–B51CrossRefPubMedGoogle Scholar
  32. 32.
    Sprung K (2005) Basic techniques of cardiac MR. Eur Radiol 15(Suppl 2):B10–B16CrossRefPubMedGoogle Scholar
  33. 33.
    Thiele H et al (2001) Functional cardiac MR imaging with steady-state free precession (SSFP) significantly improves endocardial border delineation without contrast agents. J Magn Reson Imaging 14(4):362–367CrossRefPubMedGoogle Scholar
  34. 34.
    Barkhausen J et al (2001) MR evaluation of ventricular function: true fast imaging with steady-state precession versus fast low-angle shot cine MR imaging: feasibility study. Radiology 219(1):264–269PubMedGoogle Scholar
  35. 35.
    Pruessmann KP et al (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42(5):952–962CrossRefPubMedGoogle Scholar
  36. 36.
    Sodickson DK, Manning WJ (1997) Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 38(4):591–603PubMedGoogle Scholar
  37. 37.
    Kyriakos WE et al (2000) Sensitivity profiles from an array of coils for encoding and reconstruction in parallel (SPACE RIP). Magn Reson Med 44(2):301–308CrossRefPubMedGoogle Scholar
  38. 38.
    Weiger M, Pruessmann KP, Boesiger P (2000) Cardiac real-time imaging using SENSE. SENSitivity Encoding scheme. Magn Reson Med 43(2):177–184CrossRefPubMedGoogle Scholar
  39. 39.
    Schalla S et al (2002) Real-time MR image acquisition during high-dose dobutamine hydrochloride stress for detecting left ventricular wall-motion abnormalities in patients with coronary arterial disease. Radiology 224(3):845–851PubMedGoogle Scholar
  40. 40.
    Tsao J, Boesiger P, Pruessmann KP (2003) k-t BLAST and k-t SENSE: dynamic MRI with high frame rate exploiting spatiotemporal correlations. Magn Reson Med 50(5):1031–1042CrossRefPubMedGoogle Scholar
  41. 41.
    Hundley WG et al (1999) Utility of fast cine magnetic resonance imaging and display for the detection of myocardial ischemia in patients not well suited for second harmonic stress echocardiography. Circulation 100(16):1697–1702PubMedGoogle Scholar
  42. 42.
    Kuijpers D et al (2003) Dobutamine cardiovascular magnetic resonance for the detection of myocardial ischemia with the use of myocardial tagging. Circulation 107(12):1592–1597CrossRefPubMedGoogle Scholar
  43. 43.
    Nagel E et al (1999) Noninvasive diagnosis of ischemia-induced wall motion abnormalities with the use of high-dose dobutamine stress MRI: comparison with dobutamine stress echocardiography. Circulation 99(6):763–770PubMedGoogle Scholar
  44. 44.
    Syed MA et al (2005) Reproducibility and inter-observer variability of dobutamine stress CMR in patients with severe coronary disease: implications for clinical research. J Cardiovasc Magn Reson 7(5):763–768CrossRefPubMedGoogle Scholar
  45. 45.
    Thomas JD, Rubin DN (1998) Tissue harmonic imaging: why does it work? J Am Soc Echocardiogr 11(8):803–808CrossRefPubMedGoogle Scholar
  46. 46.
    Chin D, Hancock J, Brown A et al (1998) Improved endocardial definition and evaluation of dobutamine stress echocardiography using second harmonic imaging. J Am Coll Cardiol 31(Suppl A):76ACrossRefGoogle Scholar
  47. 47.
    Hundley WG et al (2002) Magnetic resonance imaging determination of cardiac prognosis. Circulation 106(18):2328–2333CrossRefPubMedGoogle Scholar
  48. 48.
    Kuijpers D et al (2004) Dobutamine stress MRI. Part II. Risk stratification with dobutamine cardiovascular magnetic resonance in patients suspected of myocardial ischemia. Eur Radiol 14(11):2046–2052CrossRefPubMedGoogle Scholar
  49. 49.
    Rerkpattanapipat P et al (2002) Assessment of preoperative cardiac risk with magnetic resonance imaging. Am J Cardiol 90(4):416–419CrossRefPubMedGoogle Scholar
  50. 50.
    Sandstede JJ et al (1999) Detection of myocardial viability by low-dose dobutamine Cine MR imaging. Magn Reson Imaging 17(10):1437–1443CrossRefPubMedGoogle Scholar
  51. 51.
    Sandstede JJ (2003) Assessment of myocardial viability by MR imaging. Eur Radiol 13(1):52–61PubMedGoogle Scholar
  52. 52.
    Wellnhofer E et al (2004) Magnetic resonance low-dose dobutamine test is superior to SCAR quantification for the prediction of functional recovery. Circulation 109(18):2172–2174CrossRefPubMedGoogle Scholar
  53. 53.
    Zhao S et al (2000) Dobutamine magnetic resonance imaging predicts contractile reserve of chronically dysfunctional myocardium: comparison with was fluorine-18 fluorodeoxyglucose positron emission tomography. Chin Med Sci J 15(1):29–34PubMedGoogle Scholar
  54. 54.
    Gunning MG et al (1998) Comparison of 201Tl, 99mTc-tetrofosmin, and dobutamine magnetic resonance imaging for identifying hibernating myocardium. Circulation 98(18):1869–1874PubMedGoogle Scholar
  55. 55.
    Baer FM et al (1998) Dobutamine magnetic resonance imaging predicts contractile recovery of chronically dysfunctional myocardium after successful revascularization. J Am Coll Cardiol 31(5):1040–1048CrossRefPubMedGoogle Scholar
  56. 56.
    Baer FM et al (1995) Comparison of low-dose dobutamine-gradient-echo magnetic resonance imaging and positron emission tomography with [18F]fluorodeoxyglucose in patients with chronic coronary artery disease. A functional and morphological approach to the detection of residual myocardial viability. Circulation 91(4):1006–1015PubMedGoogle Scholar
  57. 57.
    Baer FM et al (1996) Comparison of dobutamine transesophageal echocardiography and dobutamine magnetic resonance imaging for detection of residual myocardial viability. Am J Cardiol 78(4):415–419CrossRefPubMedGoogle Scholar
  58. 58.
    Gutberlet M et al (2005) Myocardial viability assessment in patients with highly impaired left ventricular function: comparison of delayed enhancement, dobutamine stress MRI, end-diastolic wall thickness, and TI201-SPECT with functional recovery after revascularization. Eur Radiol 15(5):872–880CrossRefPubMedGoogle Scholar
  59. 59.
    Motoyasu M et al (2003) Prediction of regional functional recovery after acute myocardial infarction with low dose dobutamine stress cine MR imaging and contrast enhanced MR imaging. J Cardiovasc Magn Reson 5(4):563–574CrossRefPubMedGoogle Scholar
  60. 60.
    Hausmann H et al (1997) Decision-making in end-stage coronary artery disease: revascularization or heart transplantation? Ann Thorac Surg 64(5):1296–301; discussion 1302CrossRefPubMedGoogle Scholar
  61. 61.
    Hausmann H et al (2004) Factors exercising an influence on recovery of hibernating myocardium after coronary artery bypass grafting. Eur J Cardiothorac Surg 26(1):89–95CrossRefPubMedGoogle Scholar
  62. 62.
    Kramer CM et al (2000) Contractile reserve and contrast uptake pattern by magnetic resonance imaging and functional recovery after reperfused myocardial infarction. J Am Coll Cardiol 36(6):1835–1840CrossRefPubMedGoogle Scholar
  63. 63.
    Kaandorp TA et al (2005) Prediction of beneficial effect of beta blocker treatment in severe ischaemic cardiomyopathy: assessment of global left ventricular ejection fraction using dobutamine stress cardiovascular magnetic resonance. Heart 1(11):1471–1472CrossRefGoogle Scholar
  64. 64.
    Power TP et al (1997) Breath-hold dobutamine magnetic resonance myocardial tagging: normal left ventricular response. Am J Cardiol 80(9):1203–1207CrossRefPubMedGoogle Scholar
  65. 65.
    Scott CH et al (1999) Effect of dobutamine on regional left ventricular function measured by tagged magnetic resonance imaging in normal subjects. Am J Cardiol 83(3):412–417CrossRefPubMedGoogle Scholar
  66. 66.
    Nagel E, Fleck E (1999) Functional MRI in ischemic heart disease based on detection of contraction abnormalities. J Magn Reson Imaging 10(3):411–417CrossRefPubMedGoogle Scholar
  67. 67.
    Pennell DJ et al (2004) Clinical indications for cardiovascular magnetic resonance (CMR): Consensus Panel report. Eur Heart J 25(21):1940–1965CrossRefPubMedGoogle Scholar
  68. 68.
    Paetsch I et al (2005) Magnetic resonance stress tagging in ischemic heart disease. Am J Physiol Heart Circ Physiol 288(6):H2708–H2714CrossRefPubMedGoogle Scholar
  69. 69.
    Osman NF et al (1999) Cardiac motion tracking using CINE harmonic phase (HARP) magnetic resonance imaging. Magn Reson Med 42(6):1048–1060CrossRefPubMedGoogle Scholar
  70. 70.
    Kraitchman DL et al (2003) Quantitative ischemia detection during cardiac magnetic resonance stress testing by use of FastHARP. Circulation 107(15):2025–2030CrossRefPubMedGoogle Scholar
  71. 71.
    Rodgers GP et al (2000) American College of Cardiology/American Heart Association Clinical Competence Statement on Stress Testing. A Report of the American College of Cardiology/American Heart Association/American College of Physicians-American Society of Internal Medicine Task Force on Clinical Competence. Circulation 102(14):1726–1738PubMedGoogle Scholar
  72. 72.
    Weikl A et al (1989) [ECG changes caused by the effect of static magnetic fields of nuclear magnetic resonance tomography using magnets with a field power of 0.5 to 4.0 Telsa]. Z Kardiol 78(9):578–586PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of RadiologyUniversity of BonnBonnGermany

Personalised recommendations