Skip to main content
Log in

Effects of iodinated contrast media on common carotid and brachial artery blood flow and wall shear stress

  • Contrast Media
  • Published:
European Radiology Aims and scope Submit manuscript

An Erratum to this article was published on 15 July 2006

Abstract

The aim of our study was to evaluate the effect of the intravenous contrast media iomeprol on wall shear stress, blood flow and vascular parameters in the common carotid and brachial artery. Thirty outpatients undergoing thoracic or abdominal spiral CT scans were studied. The internal diameter and flow velocity of the common carotid and brachial artery were evaluated by ultrasound, and blood viscosity was measured before and after low osmolality iomeprol (Iomeron 350) injection. The wall shear stress, blood flow and pulsatility index were calculated. To test the differences between groups, the Wilcoxon rank test and Mann Whitney U test were applied. Blood viscosity decreased slightly, but significantly after contrast media (4.6±0.7 vs. 4.5±0.7 mPa.s, P=0.02). Contrarily, blood flow and wall shear stress did not change in the common carotid artery, but significantly decreased in the brachial artery (0.9±0.4 vs. 0.6±0.3 ml/s, P<0.0001, and 41.5±13.9 vs. 35.3±11.0 dynes/cm2, P<0.002, respectively), whereas the pulsatility index significantly increased in the brachial artery (5.0±3.3 vs. 7.5±5.3, P<0.001). Iomeprol injection causes blood flow and wall shear stress reduction of the brachial artery; the rise in the pulsatility index suggests an increase in peripheral vascular resistance. Further investigation is needed to evaluate whether these modifications can be clinically relevant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Baile EM, Parè PD, D’yachkova Y, Carere RG (1999) Effects of contrast media on coronary vascular resistances. Chest 116:1039–1045

    Article  PubMed  CAS  Google Scholar 

  2. Pugh ND, Karlsson JOG (1997) Vasodilator and hemorheological effects of iodinated contrast media. Drugs of Today 33:191–203

    CAS  Google Scholar 

  3. Morcos SK, Dawson P, Pearson JD, Jeremy JY, Davenport AP, Yates MS, Cipolla TP, de Haen C, Muschick P, Krause W, Refsum H, Emery CJ, Liss Nygren A, Haylor J, Pugh ND, Karlsson JO (1998) The haemodynamic effects of iodinate water soluble radiographic contrast media: a review. Eur J Radiol 29:31–46

    Article  PubMed  CAS  Google Scholar 

  4. Limbruno U, Caterina RD (2003) Vasomotor effects of iodinate contrast media: just side effect? Curr Vasc Pharmacol 1:321–328

    Article  PubMed  CAS  Google Scholar 

  5. Strickland NH, Rampling MW, Dawson P, Martin G (1992) Contrast media-induced effects on blood rheology and their importance in angiography. Clin Radiol 45:240–242

    Article  PubMed  CAS  Google Scholar 

  6. Krystal GJ, Salem MR (1996) Investigations into the mechanisms of coronary vasodilation. Invest Radiol 31:556–562

    Article  Google Scholar 

  7. Lloyd DA, Stein JS, Rowe MI (1990) The effects of a hyperosmolar intravenous contrast medium on blood viscosity. Investig Radiol 26:220–223

    Article  Google Scholar 

  8. Gustavsson CG, Persson SU, Larsson H, Persson S, Thorvinger BOS (1996) Vein blood rheology alterations immediately after coronary angiography with iohexol, and one month later. Clin Hemorheol 16:737–743

    Google Scholar 

  9. Aliev G, Obrenovich ME, Seyidova D, Rzayev NM, Aliyev AS, Raina Ak, Lamanna JC, Smith MA, Perry G (2003) X-Ray contrast media induce aortic endothelial damage, which can be prevented with prior heparin treatment. J Submicrosc Cytol Pathol 35:253–266

    PubMed  CAS  Google Scholar 

  10. Karstoft J, Baath L, Jansen I, Edvinsson L (1995) Contrast medium-induced vasoconstriction. An investigation of the vasoconstrictive action of iohexol in isolated rabbit coronary arteries. Acta Radiol 36:198–203

    Article  PubMed  CAS  Google Scholar 

  11. Olroyd S, Haylor JL, Morcos SK (1995) Bosentan, an orally active endothelin antagonist: effect on renal response to contrast media. Radiology 196:661–665

    Google Scholar 

  12. Morkos SK, Olroyd S, Haylor JL (1997) Effect of radiographic contrast media on endothelium derived nitric oxide-dependent renal vasodilatation. Br J Radiol 70:154–159

    Google Scholar 

  13. Liss P, Nygren A, Olsson U, Ulfendahl HR, Erikson U (1996) Effect of contrast media and mannitol on renal medullary blood flow and red cell aggregation in the rat kidney. Kidney Int 49:1268–1275

    PubMed  CAS  Google Scholar 

  14. Gnasso A, Carallo C, Irace C, Spagnuolo V, De Novara G, Mattioli PL, Pujia A (1996) Association between intima-media thickness and wall shear stress in the common carotid arteries in healthy male subjects. Circulation 94:3257–3262

    PubMed  CAS  Google Scholar 

  15. Sorensen KE, Celermajer DS, Spiegelharter DJ, Georgakopoulos D, Robinson J, Thomas O et al (1995) Non-invasive measurement of human endothelium dependent arterial responses: accuracy and reproducibility. Br Heart J 74:247–253

    PubMed  CAS  Google Scholar 

  16. Verma S, Buchanan M, Anderson TJ (2003) Endothelial function testing as a biomarker of vascular disease. Circulation 108:2054–2059

    Article  PubMed  Google Scholar 

  17. Lo Russo V, Taroni P, Alvino S, Spinazzi A (2001) Pharmacokinetics and safety of iomeprol in healthy volunteers and in patients with renal impairment or end-stage renal disease requiring hemodialysis. Investig Radiol 36:309–316

    Article  Google Scholar 

  18. Limbruno U, Petronio AS, Amoroso G, Baglini R, Paterni G, Merelli A, Mariottti R, De Caterina R, Mariani M (2000) The impact of coronary artery disease on the coronary vasomotor response to nonionic contrast media. Circulation 101:491–497

    PubMed  CAS  Google Scholar 

  19. Wellnhofer E, Dreysse S, Fleck E (2001) Is contrast-related vasodilatation after intracoronary iodixanolo and iopromide in vivo endothelium dependent? Eur J Echocardiogr 2:285–291

    Article  PubMed  CAS  Google Scholar 

  20. Pugh ND, Hutcheson IR, Edwards DH, Nossen JO, Karlsson JO, Griffith TM (1995) Angiographic contrast media relax isolated rabbit aorta through an endothelium-independent mechanism that may not depend on the presence of the iodine atom. Br J Radiol 68:23–26

    Article  PubMed  CAS  Google Scholar 

  21. Hutcheson IR, Griffith TM, Pitman MR, Towart R, Gregersen M, Refsum H et al (1999) Iodinate radiographic contrast media inhibit shear stress and agonist evoked release of NO by the endothelium. Br J Pharmacol 128:451–457

    Article  PubMed  CAS  Google Scholar 

  22. Ishizaka H, Kuo L (1997) Endothelial ATP-sensitive potassium channels mediate coronary microvascular dilation to hyperosmolarity. Am J Physiol 273:H104–H112

    PubMed  CAS  Google Scholar 

  23. Bagnis DG, Jacquiaud C, Dubois M, Adabra Y, Jaudon C (1999) Renal effects of low and isoosmolar contrast media on renal hemodynamic in a normal and ischemic dog kidney. Invest Radiol 34:1–4

    Article  PubMed  Google Scholar 

  24. Liss P, Carlsson PO, Palm F, Hansell P (2003) Et-A receptor antagonist BQ123 prevents radiocontrast media-induced renal medullary hypoxia. Acta Radiol l44:111–117

    Article  Google Scholar 

  25. Hetzel GR, May P, Hollenbeck M, Voiculescu A, Modder U, Grabensee B (2001) Assessment of radiocontrast media induced renal vasoconstriction by color coded duplex sonography. Ren Fail 23:77–83

    Article  PubMed  CAS  Google Scholar 

  26. Toda N, Okamura T (1992) Regulation by nitroxidergic nerve of arterial tone. Int Union Physiol Sci 7:148–156

    CAS  Google Scholar 

  27. Brian JE (1998) Carbon dioxide and the cerebral circulation. Anesthesiology 88:1365–1386

    Article  PubMed  Google Scholar 

  28. Scheller B, Hennen B, Thunenkotter T, Mrowietz C, Markwirth T, Shieffer H et al (1999) Effect of X-Ray contrast media on blood flow properties after coronary angiography. Thromb Res 96:253–260

    Article  PubMed  CAS  Google Scholar 

  29. Thomsen SH, Morcos SK (2004) Management of acute adverse reactions to contrast media. Eur Radiol 14:476–481

    Article  PubMed  Google Scholar 

  30. Osterloh K, Gaehtgens P, Pries AR (2000) Determination of microvascular flow pattern formation in vivo. Am J Physiol Circ Physiol 278:H1142–H1152

    CAS  Google Scholar 

  31. Ben Ami R, Barshtein G, Zeltser D, Goldberg Y, Shapira I, Roth A et al (2001) Parameters of red blood cell aggregation as correlates of the inflammatory state. Am J Physiol Heart Circ Physiol 280:H1982–H1988

    PubMed  CAS  Google Scholar 

  32. Davidson CJ, Laskey WK, Hermiller JB, Harrison JK, Matthai W, Vliestra RE et al (2000) Randomized trial of contrast media utilization in high-risk PTCA-The Court Trial. Circulation 101:2172–2177

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Irace.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00330-006-0374-3

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irace, C., Tamburini, S., Bertucci, B. et al. Effects of iodinated contrast media on common carotid and brachial artery blood flow and wall shear stress. Eur Radiol 16, 2721–2727 (2006). https://doi.org/10.1007/s00330-006-0280-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-006-0280-8

Keywords

Navigation