Advertisement

European Radiology

, Volume 17, Issue 1, pp 81–86 | Cite as

The impact of motion artifacts on the reproducibility of repeated coronary artery calcium measurements

  • Jun HoriguchiEmail author
  • Hiroshi Fukuda
  • Hideya Yamamoto
  • Nobuhiko Hirai
  • Farzana Alam
  • Hideaki Kakizawa
  • Masashi Hieda
  • Toshihiro Tachikake
  • Kazushi Marukawa
  • Katsuhide Ito
Cardiac

Abstract

The purpose of this study is, using a 16-section multidetector-row helical computed tomography (MDCT) scanner with retrospective reconstruction, to compare variability in repeated coronary calcium scoring and qualitative scores of the motion artifacts. One hundred forty-four patients underwent two subsequent scans using MDCT. According to Agatston and volume algorithms, the coronary calcium scores during mid-diastole (the center corresponding to 70% of the R-R cycle) were calculated and the inter-scan variability was obtained. Motion artifacts from coronary artery calcium were subjectively evaluated and classified using a 5-point scale: 1, excellent; no motion artifacts; 2, fine, minor motion artifacts; 3, moderate, mild motion artifacts; 4, bad, severe motion artifacts; 5, poor, doubling or discontinuity. Each reading was done by vessels (left main, left descending, left circumflex and right coronary arteries) and the motion artifact score (mean of the scales) was determined per patient. The variability in the low (1.2±0.2) and high (2.4±0.6) motion artifact score groups was 7±6 (median, 6)% and 19±15 (16)% on the Agatston score (P<0.01) and 7±7 (6)% and 16±13 (14)% on the volume score (P<0.01), respectively. In conclusion, motion has a significant impact on the reproducibility of coronary calcium scoring.

Keywords

Cardiac Coronary artery Calcification CT 

References

  1. 1.
    Callister TQ, Raggi P, Cooil B, Lippolis NJ, Russo DJ (1998) Effect of HMG-CoA reductase inhibitors on coronary artery disease as assessed by electron-beam computed tomography. N Engl J Med 339:1972–1978PubMedCrossRefGoogle Scholar
  2. 2.
    Budoff MJ, Lane KL, Bakhsheshi H et al (2000) Rates of progression of coronary calcium by electron beam tomography. Am J Cardiol 86:8–11CrossRefPubMedGoogle Scholar
  3. 3.
    Kajinami K, Seki H, Takekoshi N, Mabuchi H (1993) Quantification of coronary artery calcification using ultrafast computed tomography: reproducibility of measurements. Coron Artery Dis 4:1103–1108PubMedCrossRefGoogle Scholar
  4. 4.
    Yoon HC, Greaser LE III, Mather R, Sinha S, McNitt-Gray MF, Goldin JG (1997) Coronary artery calcium: alternate methods for accurate and reproducible quantitation. Acad Radiol 4:666–673CrossRefPubMedGoogle Scholar
  5. 5.
    Mao S, Bakhsheshi H, Lu B, Liu SCK, Oudiz RJ, Budoff MJ (2001) Effect of electrocardiogram triggering on reproducibility of coronary artery calcium scoring. Radiology 220:707–711PubMedCrossRefGoogle Scholar
  6. 6.
    Bielak LF, Kaufmann RB, Moll PP, McCollough CH, Schwartz RS, Sheedy PF II (1994) Small lesions in the heart identified at electron beam CT: calcification or noise? Radiology 192:631–636PubMedGoogle Scholar
  7. 7.
    Detrano R, Kang X, Mahaisavariya P et al (1994) Accuracy of quantifying coronary hydroxyapatite with electron beam tomography. Invest Radiol 29:733–738PubMedCrossRefGoogle Scholar
  8. 8.
    McCollough CH, Kaufmann RB, Cameron BM, Katz DJ, Sheedy PF II, Peyser PA (1995) Electron-beam CT: use of a calibration phantom to reduce variability in calcium quantification. Radiology 196:159–165PubMedGoogle Scholar
  9. 9.
    Achenbach S, Ropers D, Mohlenkamp S et al (2001) Variability of repeated coronary artery calcium measurements by electron beam tomography. Am J Cardiology 87:210–213CrossRefGoogle Scholar
  10. 10.
    van Ooijen PM, Vliegenthart R, Witteman JCM, Oudkerk M (2005) Influence of scoring parameter settings on Agatston and volume scores for coronary calcification. Eur Radiol 15:102–110PubMedCrossRefGoogle Scholar
  11. 11.
    Kaufmann RB, Sheedy PF II, Breen JF et al (1994) Detection of heart calcification with electron beam CT: interobserver and intraobserver reliability for scoring quantification. Radiology 190:347–352PubMedGoogle Scholar
  12. 12.
    Horiguchi J, Nakanishi T, Ito K (2001) Quantification of coronary artery calcium using multidetector CT and a retrospective ECG-gating reconstruction algorithm. AJR 177:1429–1435PubMedGoogle Scholar
  13. 13.
    Greuter MJW, Dorgelo J, Tukker WGJ, Oudkerk M (2005) Study on motion artifacts in coronary arteries with an anthropomorphic moving heart phantom on an ECG-gated multidetector computed tomography unit. Eur Radiol 15:995–1007CrossRefPubMedGoogle Scholar
  14. 14.
    Achenbach S, Meissner F, Ropers D et al (2001) Overlapping cross-sections significantly improve the reproducibility of coronary calcium measurements by electron beam tomography: a phantom study. JCAT 25:569–573Google Scholar
  15. 15.
    Kopp AF, Ohnesorge B, Becker C et al (2002) Reproducibility and accuracy of coronary calcium measurements with multi-detector row versus electron-beam CT. Radiology 225:113–119PubMedCrossRefGoogle Scholar
  16. 16.
    Ohnesorge B, Flohr T, Fischbach R et al (2002) Reproducibility of coronary calcium quantification in repeat examinations with retrospectively ECG-gated multisection spiral CT. Eur Radiol 12:1532–1540CrossRefPubMedGoogle Scholar
  17. 17.
    Mahnken AH, Wildberger JE, Sinha AM et al (2002) Variation of the coronary calcium score depending on image reconstruction interval and scoring algorithm. Invest Radiol 37:496–502CrossRefPubMedGoogle Scholar
  18. 18.
    Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M, Detrano R (1990) Quantification of coronary calcium using ultrafast computed tomography. J Am Coll Cardiol 15:827–832PubMedCrossRefGoogle Scholar
  19. 19.
    Callister TQ, Cooil B, Raya SP et al (1998) Coronary artery disease: improved reproducibility of calcium scoring with an electron-beam CT volumetric method. Radiology 208:807–814PubMedGoogle Scholar
  20. 20.
    Hong C, Bae KT, Pilgram TK, Zhu F (2003) Coronary artery calcium quantification at multi-detector row CT: influence of heart rate and measurement methods on interacquisition variability-initial experience. Radiology 228:95–100PubMedCrossRefGoogle Scholar
  21. 21.
    Detrano RC, Anderson M, Nelson J et al (2005) Coronary calcium measurements: effect of CT scanner type and calcium measure on rescan reproducibility-MESA study. Radiology 236:477–484PubMedCrossRefGoogle Scholar
  22. 22.
    Wang S, Detrano RC, Secci A et al (1996) Detection of coronary calcification with electron-beam computed tomography: evaluation of interexamination reproducibility and comparison of three image-acquisition protocols. Am Heart J 132:550–558CrossRefPubMedGoogle Scholar
  23. 23.
    Horiguchi J, Yamamoto H, Akiyama Y et al (2005) Variability of Repeated coronary artery calcium measurements by 16-slice spiral CT with retrospective reconstruction. AJR 184:1917–1923PubMedGoogle Scholar
  24. 24.
    Horiguchi J, Yamamoto H, Akiyama Y, et al (2006) Variability of repeated coronary artery calcium measurements by low-dose ECG- gated 16-slice spiral CT. AJR 187(1) DOI 10.2214/AJR.05.0052Google Scholar
  25. 25.
    Lu B, Zhuang N, Mao SS et al (2002) EKG-triggered CT data acquisition to reduce variability in coronary arterial calcium score. Radiology 224:838–844PubMedCrossRefGoogle Scholar
  26. 26.
    Shields JP, Mielke CH Jr, Watson P (1996) Inter-rater reliability of electron beam computed tomography to detect coronary artery calcification. Am J Card Imaging 10:91–96PubMedGoogle Scholar
  27. 27.
    Lu B, Mao SS, Zhuang N et al (2001) Coronary artery motion during the cardiac cycle and optimal ECG triggering for coronary artery imaging. Invest Radiol 36:250–256CrossRefPubMedGoogle Scholar
  28. 28.
    Achenbach S, Ropers D, Holle J, Muschiol G, Daniel WG, Moshage W (2000) In-plane coronary arterial motion velocity: measurement with electron-beam CT. Radiology 216:457–463PubMedGoogle Scholar
  29. 29.
    Hofman MB, Wickline SA, Lorenz CH (1998) Quantification of in-plane motion of the coronary arteries during the cardiac cycle: implications for acquisition window duration for MR flow quantification. J Magn Reson Imaging 8:568–576PubMedCrossRefGoogle Scholar
  30. 30.
    Mao S, Budoff MJ, Bin L, Liu SC (2001) Optimal ECG trigger point in electron-beam CT studies: three methods for minimizing motion artifacts. Acad Radiol 8:1107–1115CrossRefPubMedGoogle Scholar
  31. 31.
    Hoffmann MHK, Shi H, Manzke R et al (2005) Noninvasive coronary angiography with 16-detector row CT: effect of heart rate. Radiology 234:86–97PubMedCrossRefGoogle Scholar
  32. 32.
    Vembar M, Garcia MJ, Heuscher DJ et al (2003) A dynamic approach to identifying desired physiological phases for cardiac imaging using multislice spiral CT. Med Phys 30:1683–1693CrossRefPubMedGoogle Scholar
  33. 33.
    Hoffmann MHK, Lessick J, Manzke R et al (2006) Automatic determination of minimal cardiac motion phases for computed tomography imaging: initial experience. Eur Radiol 16(2):365–373CrossRefPubMedGoogle Scholar
  34. 34.
    Maher JE, Bielak LF, Raz JA, Sheedy PF II, Schwartz RS, Peyser PA (1999) Progression of coronary artery calcification: a pilot study. Mayo Clin Proc 74:347–355PubMedCrossRefGoogle Scholar
  35. 35.
    Janowitz WR, Agatston AS, Viamonte M Jr (1991) Comparison of serial quantitative evaluation of calcified coronary artery plaque by ultrafast computed tomography in persons with and without obstructive coronary artery disease. Am J Cardiol 68:1–6CrossRefPubMedGoogle Scholar
  36. 36.
    Fischbach R, Heindel W (2000) Detection and quantification of coronary calcification: an update. Rofo 172:407–414PubMedGoogle Scholar
  37. 37.
    Jakobs TF, Becker CR, Ohnesorge B et al (2002) Multislice helical CT of the heart with retrospective ECG gating: reduction of radiation exposure by ECG-controlled tube current modulation. Eur Radiol 12:1081–1086CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Jun Horiguchi
    • 1
    Email author
  • Hiroshi Fukuda
    • 1
  • Hideya Yamamoto
    • 2
  • Nobuhiko Hirai
    • 1
  • Farzana Alam
    • 3
  • Hideaki Kakizawa
    • 3
  • Masashi Hieda
    • 3
  • Toshihiro Tachikake
    • 3
  • Kazushi Marukawa
    • 3
  • Katsuhide Ito
    • 3
  1. 1.Department of Clinical RadiologyHiroshima University HospitalHiroshimaJapan
  2. 2.Department of Molecular and Internal Medicine, Division of Clinical Medical Science, Programs for Applied Biomedicine, Graduate School of Biomedical SciencesHiroshima UniversityHiroshimaJapan
  3. 3.Department of Radiology, Division of Medical Intelligence and Informatics, Programs for Applied Biomedicine, Graduate School of Biomedical SciencesHiroshima UniversityHiroshimaJapan

Personalised recommendations