European Radiology

, Volume 16, Issue 6, pp 1216–1225 | Cite as

Whole-body MRI and PET-CT in the management of cancer patients

  • Gerwin P. Schmidt
  • Alexander R. Haug
  • Stefan O. Schoenberg
  • Maximilian F. Reiser
Oncology

Abstract

Mortality rate, prognosis, and treatment outcome of cancer patients depend strongly on the detection of malignancy at an early stage and efficient monitoring of the disease. Multimodality diagnostic approaches are now widely applied for tumor detection, staging, and follow-up. However, the introduction of whole-body imaging modalities into clinical practice has substantially expanded diagnostic options. PET-CT has increased diagnostic accuracy by providing “anatometabolic” information by fusing tumor glucose-uptake measures from the PET examination and accurate delineation of anatomical structures given by spiral CT. Since PET-CT is associated with high doses of ionizing radiation, it is used in mainly tumor staging and screening within the scope of tertiary prevention. Here promising results have been reported for various tumor entities. MRI provides excellent tissue contrast, detailed morphological information and lack of ionizing radiation. MRI has been employed for the assessment of focal pathologies in specific anatomical regions. Whole-body MRI scanners using multiple receiver channels with parallel acquisition techniques now allow tumor screening from head to toe within substantially shorter examination times and without compromises in image resolution. We report our experience with these two novel techniques and discuss their benefits and drawbacks in terms of systemic tumor screening.

Keywords

Screening Oncology Magnetic resonance imaging Positron emission tomography Computed tomography 

References

  1. 1.
    World Health Organization (2004) WHO health report 2004: statistical annex. http://www.who.int. World Health Organization, Geneva, SwitzerlandGoogle Scholar
  2. 2.
    Bayes T (1763) An essay towards solving a problem in the doctrine of chances. Philos Trans R Soc Lond 53:370–418CrossRefGoogle Scholar
  3. 3.
    Beyer T, Townsend DW, Brun T, Kinahan PE, Charron M, Roddy R et al (2000) A combined PET/CT scanner for clinical oncology. J Nucl Med 41:1369–13679PubMedGoogle Scholar
  4. 4.
    Pelosi E, Messa C, Sironi S, Picchio M, Landoni C, Bettinardi V et al (2004) Value of integrated PET/CT for lesion localisation in cancer patients: a comparative study. Eur J Nucl Med Mol Imaging 31:932–939CrossRefPubMedGoogle Scholar
  5. 5.
    Lardinois D, Weder W, Hany TF, Kamel EM, Korom S et al (2003) Staging of non-small-cell cancer with integrated positron-emission tomography and computed tomography. N Engl J Med 348:2500–2507CrossRefPubMedGoogle Scholar
  6. 6.
    Cohade C, Osman M, Leal J, Wahl RL (2003) Direct comparison of 18F-FDG-PET and PET-CT in patients with colorectal carcinoma. J Nucl Med 44:1797–1803PubMedGoogle Scholar
  7. 7.
    Wechalekar K, Sharma B, Cook G (2005) PET/CT in oncology-a major advance. Clin Radiol 60:1143–1155CrossRefPubMedGoogle Scholar
  8. 8.
    Barkhausen J, Quick HH, Lauenstein T et al (2001) Whole-body MR imaging in 30 seconds with real-time true FISP and a continously rolling table platform: feasability study. Radiology 220:252–256PubMedGoogle Scholar
  9. 9.
    Pruessmann KP, Weiger M, Scheidegger MB et al (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962CrossRefPubMedGoogle Scholar
  10. 10.
    Griswold MA, Jakob PM, Heidemann RM et al (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47:1202–1210CrossRefPubMedGoogle Scholar
  11. 11.
    Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM (1990) The NMR phased array. Magn Reson Med 16:192–225PubMedCrossRefGoogle Scholar
  12. 12.
    Keupp J, Aldefeld B, Bornert P (2005) Continously moving table SENSE imaging. Magn Reson Med 53:217–220CrossRefPubMedGoogle Scholar
  13. 13.
    Anonymous (2004) Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO). http://www3.cancer.gov/prevention/plco
  14. 14.
    Berry DA, Cronin KA, Plevritis SK, Fryback DG, Clarke L, Zelen M et al (2005) Effect of screening and adjuvant therapy on mortality from breast cancer. New Eng J Med 27:1784–1792CrossRefGoogle Scholar
  15. 15.
    Nicholson FB, Barro JL, Bartram CI, Dehmeshki J, Halligan S, Taylor S, Kamm MA et al (2005) The role of CT colonography in colorectal cancer screening. Am J Gastroenterol 100:2315–2323CrossRefPubMedGoogle Scholar
  16. 16.
    Diederich S, Wormanns D, Semik M, Thomas M, Lenzen, Roos N et al (2002) Screening for early lung cancer with low-dose spiral CT: prevalence in 817 asymptomatic smokers. Radiology:773–778Google Scholar
  17. 17.
    European Comission on Energy (2004) Europe. http://europa.eu.int/comm/erergy/nuclear/radioprotection/doc/legislation/9743_en.pdf; accessed November 22
  18. 18.
    Brix G, Lechel U, Glatting G, Ziegler SI, Münzing W, Müller SP, Beyer T (2005) Radiation exposure of patients undergoing whole-body dual-modality 18F-FDG PET/CT examinations. J Nucl Med 46:608–613PubMedGoogle Scholar
  19. 19.
    Goehde SC, Hunold P, Vogt FM, Ajaj W, Goyen M, Herborn CU et al (2005) Full-body cardiovascular and tumor MRI for early detection of disease: feasibility and initial experience in 298 subjects. Am J Roentgenol 184:598–611PubMedGoogle Scholar
  20. 20.
    Kramer H, Schoenberg SO, Nikolaou K, Huber A, Struwe A, Winnik E (2005) Cardiovascular screening with parallel imaging techniques and a whole-body imager. Radiology 236:300–310PubMedCrossRefGoogle Scholar
  21. 21.
    Ajaj W, Pelster G, Treichel U, Vogt FM, Debatin JF, Ruehm SG (2003) Dark lumen magnetic resonance colonography: comparison with conventional colonoscopy fort he detection of colorectal pathology. Gut 52:1738–1743CrossRefPubMedGoogle Scholar
  22. 22.
    American Joint Committee on Cancer (2002) AJCC cancer staging manual, 6th edn. Springer, Berlin Heidelberg New YorkGoogle Scholar
  23. 23.
    Antoch G, Saoudi N, Kuehl H, Dahmen G, Mueller SP, Beyer T et al (2004) Accuracy of whole-body dual-modality fluorine-18–2-fluoro-2-deoxy-D-glucose positron emission tomography and computed tomography (FDG-PET/CT) for tumor staging in solid tumors: comparison with CT and PET. J Clin Oncol 22:4357–4368CrossRefPubMedGoogle Scholar
  24. 24.
    Semelka RC, Worawattanakul S, Kelekis NL et al (1997) Liver lesion detection, characterization, and effect on patient management: comparison of single phase spiral-CT and current MR techniques. J Magn Reson Imaging 7:1040–1047PubMedCrossRefGoogle Scholar
  25. 25.
    Steinborn M, Heuck AF, Tiling R, Bruegel M, Gauger L, Reiser MF (1999) Whole body bone marrow MRI in patients with metastatic disease to the skeletal system. J Comput Assist Tomogr 23:123–129CrossRefPubMedGoogle Scholar
  26. 26.
    Antoch G, Vogt FM, Freudenberg LS, Nazaradeh F, Goehde SC, Barkhausen J et al (2003) Whole-body dual-modality PET/CT and whole-body MRI for tumor staging in oncology. JAMA 290:3199–3206CrossRefPubMedGoogle Scholar
  27. 27.
    Schmidt GP, Baur-Melnyk A, Herzog P, Schmid R, Tiling R, Reiser MF et al (2005) High-resolution whole-body MRI tumor staging with the use of parallel imaging versus dual modality PET-CT: experience on a 32-channel system. Invest Radiol 40:743–7531CrossRefPubMedGoogle Scholar
  28. 28.
    Antoch G, Saoudi N, Kuehl H, Dahmen G, Mueller SP, Beyer T et al (2004) Accuracy of whole-body dual-modality fluorine-18–2-fluoro-2-deoxy-D-glucose positron emission tomography and computed tomography (FDG-PET/CT) for tumor staging in solid tumors: comparison with CT and PET. J Clin Oncol 22:4357–4368CrossRefPubMedGoogle Scholar
  29. 29.
    Gutzeit A, Antoch G, Kühl H, Egelhof T, Fischer M, Hauth E et al (2005) Unknown primary tumours: detection with dual-modality PET-CT-initial experience. Radiology 234:227–234PubMedCrossRefGoogle Scholar
  30. 30.
    Brennan DD, Gleeson T, Coate LE, Cronin C, Carney D, Eustace SJ (2005) A comparison of whole-body MRI and CT for the staging of lymphoma. Am J Roentgenol 185:711–716PubMedCrossRefGoogle Scholar
  31. 31.
    Kellenberger CJ, Miller SF, Khan M, Gilday D, Weitzman S, Babyn PS (2004) Initial experience with FSE STIR-whole-body MR imaging for staging lymphoma in children. Eur Radiol 14:1829–1841CrossRefPubMedGoogle Scholar
  32. 32.
    Pieterman RM, van Putten JW, Meuzelaar JJ, Mooyaart EL, Vaalburg W, Kotere GH et al (2000) Preoperative staging of non-small-cell lung cancer with positron-emission tomography. N Engl J Med 343:254–261CrossRefPubMedGoogle Scholar
  33. 33.
    Takahara T, Imay Y, Yamashita T, Yasuda S, Nasu S, Van Cauteren M (2004) Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Radiat Med 22:275–282PubMedGoogle Scholar
  34. 34.
    Ohno Y, Hatabu H, Takenaka D, Higashino T, Watanabe H, Ohbayashi C et al (2004) Metastases in mediastinal and hilar lymph nodes in patients with non-small cell lung cancer: quantitative and qualitative assessment with STIR turbo spin-echo MR imaging. Radiology 231:872–879PubMedCrossRefGoogle Scholar
  35. 35.
    Ghanem N, Uhl M, Brink I, Schäfer O, Kelly T, Moser E (2005) Diagnostic value of MRI in comparison to scintigraphy, PET, MS-CT and PET-CT for the detection of metastases of bone. Eur J Radiol 55:41–55CrossRefPubMedGoogle Scholar
  36. 36.
    Mentzel HJ, Kentouche K, Sauner D, Fleischmann C, Vogt S, Gottschild D (2004) Comparison of whole-body STIR-MRI and 99m-Tc-methylene-diphosphonate scintigraphy in children with suspected multifocal bone lesions. Eur Radiol 14:2297–2302CrossRefPubMedGoogle Scholar
  37. 37.
    Schmidt GP, Schoenberg SO, Reiser MF, Baur-Melnyk A (2005) Whole-body MR imaging of bone marrow. Eur J Radiol 55:33–40CrossRefPubMedGoogle Scholar
  38. 38.
    Daldrup-Link HE, Franzius C, Link TM et al (2001) Whole-body MR imaging for detection of bone metastases in children and young adults: comparison with skeletal scintigraphy and FDG PET. AJR Am J Roentgenol 177:229–236PubMedGoogle Scholar
  39. 39.
    Schlemmer HP, Schäfer J, Pfannenberg C, Radny P, Korchidi S, Müller-Horvat C (2005) Fast whole-body assessment of metastatic disease using a novel magnetic resonance imaging system: initial experiences. Invest Radiol 40:64–71CrossRefPubMedGoogle Scholar
  40. 40.
    Cook GJ, Wegner E, Fogleman I (2004) Pitfalls and artefacts in 18 FDG-PET and PET-CT oncologic imaging. Semin Nucl Med 34:122–133CrossRefPubMedGoogle Scholar
  41. 41.
    Goerres GW, Kamel E, Heidelberg TN, Schwitter MR, Burger C, von Schuthess GK (2002) Accuracy of image co-registration in the thorax: influence of respiration. Eur J Nucl Med Mol Imaging 29:351–360CrossRefPubMedGoogle Scholar
  42. 42.
    Antoch G, Freudenberg LS, Stattaus J, Jentzen W, Debatin JF et al (2002) Focal tracer uptake: a potential artefact in contrast-enhanced dual-modality PET-CT scans. J Nucl Med 43:1339–1342PubMedGoogle Scholar
  43. 43.
    Ichikawa T, Erturk S, Motosuqi U, Sano K, Ros P et al (2005) Virtual PET-MRI as a novel oncologic imaging of the body: principles, techniques and clinical applications. RSNA 2005, abstract 1330BP-eGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Gerwin P. Schmidt
    • 1
  • Alexander R. Haug
    • 2
  • Stefan O. Schoenberg
    • 1
  • Maximilian F. Reiser
    • 1
  1. 1.Department of Clinical Radiology, University Hospitals GrosshadernLudwig Maximilian UniversityMunichGermany
  2. 2.Department of Nuclear Medicine, University Hospitals GrosshadernLudwig Maximilian UniversityMunichGermany

Personalised recommendations