Skip to main content
Log in

Facilitating coronary artery evaluation in MDCT using a 3D automatic vessel segmentation tool

  • Cardiac
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate a 3D coronary artery segmentation algorithm using 16-row MDCT data sets. Fifty patients underwent cardiac CT (Sensation 16, Siemens) and coronary angiography. Automatic and manual detection of coronary artery stenosis was performed. A 3D coronary artery segmentation algorithm (Fraunhofer Institute for Computer Graphics, Darmstadt) was used for automatic evaluation. All significant stenoses (>50%) in vessels >1.5 mm in diameter were protocoled. Each detection tool was used by one reader who was blinded to the results of the other detection method and the results of coronary angiography. Sensitivity and specificity were determined for automatic and manual detection as well as was the time for both CT-based evaluation methods. The overall sensitivity and specificity of the automatic and manual approach were 93.1 vs. 95.83% and 86.1 vs. 81.9%. The time required for automatic evaluation was significantly shorter than with the manual approach, i.e., 246.04±43.17 s for the automatic approach and 526.88±45.71 s for the manual approach (P<0.0001). In 94% of the coronary artery branches, automatic detection required less time than the manual approach. Automatic coronary vessel evaluation is feasible. It reduces the time required for cardiac CT evaluation with similar sensitivity and specificity as well as facilitates the evaluation of MDCT coronary angiography in a standardized fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CABG:

coronary artery bypass graft

ACVB:

aortocoronary venous bypass

LITA:

left internal thoracic artery

LAD:

left anterior descending artery

RCA:

right coronary artery

LCX:

left circumflex artery

MIP:

thin slap maximum intensity projection

MPR:

multiplanar reformation

VRT:

volume-rendering reformation

FOV:

field of view

TECAB:

totally endoscopic coronary artery bypass

MDCT:

multidetector computed tomography

References

  1. Milan E (2005) Coronary artery disease. The other half of the heaven. Q J Nucl Med Mol Imaging 49:72–80

    PubMed  CAS  Google Scholar 

  2. Raggi P (2001) The use of electron-beam computed tomography as a tool for primary prevention. Am J Cardiol 88:28J–32J

    Article  PubMed  CAS  Google Scholar 

  3. Saxon LA (2005) Sudden cardiac death: epidemiology and temporal trends. Rev Cardiovasc Med 6 (Suppl 2):S12–S20

    PubMed  Google Scholar 

  4. Zheng ZJ, Croft JB, Giles WH, Mensah GA (2001) Sudden cardiac death in the United States, 1989 to 1998. Circulation 104:2158–2163

    Article  PubMed  CAS  Google Scholar 

  5. Ropers D, Baum U, Pohle K et al (2003) Detection of coronary artery stenoses with thin-slice multi-detector row spiral computed tomography and multiplanar reconstruction. Circulation 107:664–666

    Article  PubMed  Google Scholar 

  6. Nieman K, Cademartiri F, Lemos PA, Raaijmakers R, Pattynama PM, de Feyter PJ (2002) Reliable noninvasive coronary angiography with fast submillimeter multislice spiral computed tomography. Circulation 106:2051–2054

    Article  PubMed  Google Scholar 

  7. Cademartiri F, Malagutti P, Belgrano M et al (2005) Non-invasive coronary angiography with 64-slice computed tomography. Minerva Cardioangiol 53:465–472

    PubMed  CAS  Google Scholar 

  8. Lenzen MJ, Boersma E, Bertrand ME et al (2005) Management and outcome of patients with established coronary artery disease: the Euro Heart Survey on coronary revascularization. Eur Heart J 26:1169–1179

    Article  PubMed  CAS  Google Scholar 

  9. Dewey M, Schnapauff D, Laule M et al (2004) Multislice CT coronary angiography: evaluation of an automatic vessel detection tool. Rofo 176:478–483

    PubMed  CAS  Google Scholar 

  10. Wesarg S (2005) Supporting the TECAB grafting through CT based analysis of coronary arteries. In: Frangi, AF (ed) u.a.: Functional imaging and modeling of the heart. Proceedings Berlin, Heidelberg, New York: Springer Verlag, pp. 133–142 (Lecture Notes in Computer Science 3504)

    Google Scholar 

  11. Herzog C, Dogan S, Diebold T et al (2003) Multi-detector row CT versus coronary angiography: preoperative evaluation before totally endoscopic coronary artery bypass grafting. Radiology 229:200–208

    Article  PubMed  Google Scholar 

  12. Fleischmann D (2003) High-concentration contrast media in MDCT angiography:principles and rationale. Eur Radiol 13 (Suppl. 3):39–43

    Article  Google Scholar 

  13. Flohr T, Ohnesorge B (2001) Heart rate adaptive optimization of spatial and temporal resolution for electrocardiogram-gated multislice spiral CT of the heart. J Comput Assist Tomogr 25:907–923

    Article  PubMed  CAS  Google Scholar 

  14. Luisada AA, MacCanon DM (1972) The phases of the cardiac cycle. Am Heart J 83:705–711

    Article  PubMed  CAS  Google Scholar 

  15. Herzog C, Abolmaali N, Balzer JO et al (2002) Heart-rate-adapted image reconstruction in multidetector-row cardiac CT: influence of physiological and technical prerequisite on image quality. Eur Radiol 12:2670–2678

    PubMed  Google Scholar 

  16. Hamoir XL, Flohr T, Hamoir V et al (2005) Coronary arteries: assessment of image quality and optimal reconstruction window in retrospective ECG-gated multislice CT at 375-ms gantry rotation time. Eur Radiol 15:296–304

    Article  PubMed  Google Scholar 

  17. Achenbach S, Ropers D, Holle J, Muschiol G, Daniel WG, Moshage W (2000) In-plane coronary arterial motion velocity: measurement with electron-beam CT. Radiology 216:457–463

    PubMed  CAS  Google Scholar 

  18. Hong C, Becker CR, Huber A, et al (2001) ECG-gated reconstructed multi-detector row CT coronary angiography: effect of varying trigger delay on image quality. Radiology 220:712–717

    Article  PubMed  CAS  Google Scholar 

  19. Kopp AF, Ohnesorge B, Flohr T et al (2000) [Cardiac multidetector-row CT: first clinical results of retrospectively ECG-gated spiral with optimized temporal and spatial resolution]. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 172:429–435

    Article  PubMed  CAS  Google Scholar 

  20. Georg C, Kopp A, Schroder S et al (2001) [Optimizing image reconstruction timing for the RR interval in imaging coronary arteries with multi-slice computerized tomography]. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 173:536–541

    Article  PubMed  CAS  Google Scholar 

  21. Heuschmid M, Kuettner A, Schroeder S et al (2005) ECG-gated 16-MDCT of the coronary arteries: Assessment of image quality and accuracy in detecting stenoses. AJR Am J Roentgenol 184:1413–1419

    PubMed  Google Scholar 

  22. Leschka S, Alkadhi H, Plass A et al (2005) Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur Heart J

  23. Morgan-Hughes GJ, Roobottom CA, Owens PE, Marshall AJ (2005) Highly accurate coronary angiography with submillimetre, 16 slice computed tomography. Heart 91:308–313

    Article  PubMed  CAS  Google Scholar 

  24. Zhang SZ, Hu XH, Zhang QW, Huang WX (2005) Evaluation of computed tomography coronary angiography in patients with a high heart rate using 16-slice spiral computed tomography with 0.37-s gantry rotation time. Eur Radiol 15:1105–1109

    Article  PubMed  Google Scholar 

  25. Herzog C, Dogan S, Wimmer-Greinecker G, Balzer JO, Mack MG, Vogl TJ (2003) Multidetector-row CT: cardiosurgery indications. Eur Radiol 13 (Suppl 5):M82–M87

    PubMed  Google Scholar 

  26. Bley TA, Ghanem NA, Foell D et al (2005) Computed tomography coronary angiography with 370-millisecond gantry rotation time: evaluation of the best image reconstruction interval. J Comput Assist Tomogr 29:1–5

    Article  PubMed  Google Scholar 

  27. Cademartiri F, Luccichenti G, Marano R, Runza G, Midiri M (2004) Use of saline chaser in the intravenous administration of contrast material in non-invasive coronary angiography with 16-row multislice computed tomography. Radiol Med (Torino) 107:497–505

    Google Scholar 

  28. Cademartiri F, Luccichenti G, Marano R, Gualerzi M, Brambilla L, Coruzzi P (2004) Comparison of monophasic vs biphasic administration of contrast material in non-invasive coronary angiography using a 16-row multislice computed tomography. Radiol Med (Torino) 107:489–496

    Google Scholar 

  29. Cademartiri F, Luccichenti G, van Der Lugt A et al (2004) Sixteen-row multislice computed tomography: basic concepts, protocols, and enhanced clinical applications. Semin Ultrasound CT MR 25:2–16

    Article  PubMed  Google Scholar 

  30. Hoffmann MH, Shi H, Manzke R et al (2005) Noninvasive coronary angiography with 16-detector row CT: effect of heart rate. Radiology 234:86–97

    Article  PubMed  Google Scholar 

  31. Kopp AF, Kuttner A, Trabold T, Heuschmid M, Schroder S, Claussen CD (2003) MDCT: cardiology indications. Eur Radiol 13 (Suppl 5):M102–M115

    PubMed  Google Scholar 

  32. Francone M, Carbone I, Danti M et al (2005) ECG-gated multi-detector row spiral CT in the assessment of myocardial infarction: correlation with non-invasive angiographic findings. Eur Radiol. DOI 10.1007/s00330-005-2800-3

  33. Marano R, Storto ML, Maddestra N, Bonomo L (2004) Non-invasive assessment of coronary artery bypass graft with retrospectively ECG-gated four-row multi-detector spiral computed tomography. Eur Radiol 14:1353–1362

    Article  PubMed  Google Scholar 

  34. Vogl TJ, Abolmaali ND, Diebold T et al (2002) Techniques for the detection of coronary atherosclerosis: multi-detector row CT coronary angiography. Radiology 223:212–220

    Article  PubMed  Google Scholar 

  35. Khan MF, Herzog C, Landenberger K et al (2005) Visualisation of non-invasive coronary bypass imaging: 4-row vs. 16-row multidetector computed tomography. Eur Radiol 15:118–126

    Article  PubMed  Google Scholar 

  36. Khan MF, Herzog C, Landenberger K et al (2005) MDCT of the proximal anastomoses created by nitinol implants in coronary artery bypass grafting: a retrospective two-observer evaluation. Eur Radiol 15:305–311

    Article  PubMed  Google Scholar 

  37. van Ooijen PM, Ho KY, Dorgelo J, Oudkerk M (2003) Coronary artery imaging with multidetector CT: visualization issues. Radiographics 23:e16

    Article  PubMed  Google Scholar 

  38. Nakanishi T, Kayashima Y, Inoue R, Sumii K, Gomyo Y (2005) Pitfalls in 16-detector row CT of the coronary arteries. Radiographics 25:425–438; discussion 438–440

    Article  PubMed  Google Scholar 

  39. Choi HS, Choi BW, Choe KO et al (2004) Pitfalls, artifacts, and remedies in multi- detector row CT coronary angiography. Radiographics 24:787–800

    Article  PubMed  Google Scholar 

  40. Kirbas C, Quek K (2003) Vessel extraction techniques and algorithms: A survey. In: Proc of the 3rd IEEE Symposium on Bioinformatics and Bioengineering 238–245

  41. Yoo TSe (2004) Insight into images. A K Peters, Ltd

  42. Sorantin E, Halmai C, Erdohely B et al (2002) Spiral-CT-based assessment of tracheal stenoses using 3-D-skeletonization. IEEE Trans Med Imag 21:263–273

    Article  Google Scholar 

  43. Verdonck B, Bloch I, Maître H, Vandermeulen D, Suetens P, Marchal G (1995) Blood vessel segmentation and visualization in 3D MR and spiral CT angiography. In: Lemke, H.U. (ed): Computer assisted radiology. Proc of the CAR, Springer 177–182

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Fawad Khan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, M.F., Wesarg, S., Gurung, J. et al. Facilitating coronary artery evaluation in MDCT using a 3D automatic vessel segmentation tool. Eur Radiol 16, 1789–1795 (2006). https://doi.org/10.1007/s00330-006-0159-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-006-0159-8

Keywords

Navigation