Skip to main content
Log in

Accuracy of biopsy needle navigation using the Medarpa system—computed tomography reality superimposed on the site of intervention

  • Vascular-Interventional
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

The aim of this work was to determine the accuracy of a new navigational system, Medarpa, with a transparent display superimposing computed tomography (CT) reality on the site of intervention. Medarpa uses an optical and an electromagnetic tracking system which allows tracking of instruments, the radiologist and the transparent display. The display superimposes a CT view of a phantom chest on a phantom chest model, in real time. In group A, needle positioning was performed using the Medarpa system. Three targets (diameter 1.5 mm) located inside the phantom were punctured. In group B, the same targets were used to perform standard CT-guided puncturing using the single-slice technique. The same needles were used in both groups (15 G, 15 cm). A total of 42 punctures were performed in each group. Post puncture, CT scans were made to verify needle tip positions. The mean deviation from the needle tip to the targets was 6.65±1.61 mm for group A (range 3.54–9.51 mm) and 7.05±1.33 mm for group B (range 4.10–9.45 mm). No significant difference was found between group A and group B for any target (p>0.05). No significant difference was found between the targets of the same group (p>0.05). The accuracy in needle puncturing using the augmented reality system, Medarpa, matches the accuracy achieved by CT-guided puncturing technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kato A, Yoshimine T, Hayakawa T et al (1991) A frameless, armless navigational system for computer-assisted neurosurgery. Technical note. J Neurosurg 74:845–849

    Google Scholar 

  2. Bolger C, Wigfield C (2000) Image-guided surgery: applications to the cervical and thoracic spine and a review of the first 120 procedures. J Neurosurg Spine 92:175–180

    Google Scholar 

  3. Foley KT, Smith MM (1996) Image-guided spine surgery. Neurosurg Clin N Am 7:171–186

    CAS  PubMed  Google Scholar 

  4. Kamimura M, Ebara S, Itoh H, Tateiwa Y, Kinoshita T, Takaoka K (1999) Accurate pedicle screw insertion under the control of a computer-assisted image guiding system: laboratory test and clinical study. J Orthop Sci 4:197–206

    Article  CAS  PubMed  Google Scholar 

  5. Laine T, Lund T, Ylikoski M, Lohikoski J, Schlenzka D (2000) Accuracy of pedicle screw insertion with and without computer assistance: a randomised controlled clinical study in 100 consecutive patients. Eur Spine J 9:235–240; discussion 241

    Article  CAS  PubMed  Google Scholar 

  6. Smith KR, Frank KJ, Bucholz RD (1994) The NeuroStation—a highly accurate, minimally invasive solution to frameless stereotactic neurosurgery. Comput Med Imaging Graph 18:247–256

    Google Scholar 

  7. Sandeman DR, Gill SS (1995) The impact of interactive image guided surgery: the Bristol experience with the ISG/elekta viewing wand. Acta Neurochir Suppl (Wien) 64:54–58

    Google Scholar 

  8. Tirakotai W, Sure U, Benes L, Krischek B, Bien S, Bertalanffy H (2003) Image-guided transsylvian, transinsular approach for insular cavernous angiomas. Neurosurgery 53:1299–1304; discussion 1304–1295

    Article  Google Scholar 

  9. Tang J, Cleary K (2003) Breakdown of tracking accuracy for electromagnetically guided abdominal interventions. Computer assisted radiology and surgery 2003. In: Lemke HU, Vannier MW, Inamura K, Farman AG, Doi K, Reiber JHC (eds) Proc. 17th CARS, pp 452–459

  10. Schwarz Y, Mehta AC, Ernst A et al (2003) Electromagnetic navigation during flexible bronchoscopy. Respiration 70:516–522

    Google Scholar 

  11. Sindwani R, Metson R (2004) Impact of image guidance on complications during osteoplastic frontal sinus surgery. Otolaryngol Head Neck Surg 131:150–155

    Google Scholar 

  12. Rampersaud YR, Foley KT, Shen AC, Williams S, Solomito M (2000) Radiation exposure to the spine surgeon during fluoroscopically assisted pedicle screw insertion. Spine 25:2637–2645

    Article  CAS  PubMed  Google Scholar 

  13. Foley KT, Simon DA, Rampersaud YR (2001) Virtual fluoroscopy: computer-assisted fluoroscopic navigation. Spine 26:347–351

    CAS  PubMed  Google Scholar 

  14. Holzknecht N, Helmberger T, Schoepf UJ et al (2001) Evaluation of an electromagnetic virtual target system (CT-guide) for CT-guided interventions. Rofo Fortschr Geb Rontgenstrahlen Neuen Bildgeb Verfahr 173:612–618

    Google Scholar 

  15. R Bucholz, Marzouk K, A Levy (1999) Image guidance and the operating microscope: stealth and neural navigation. In: Alexander E III, Maciunas RJ (eds) Advanced neurosurgical navigation. Thieme Medical Publishers, Inc., New York

    Google Scholar 

  16. Tirakotai W, Riegel T, Sure U, Bozinov O, Hellwig D, Bertalanffy H (2004) Clinical application of neuro-navigation in a series of single burr-hole procedures. Zentralbl Neurochir 65:57–64

    Article  CAS  PubMed  Google Scholar 

  17. Medarpa (2003)http://www.medarpa.de

  18. Kotani Y, Abumi K, Ito M, Minami A (2003) Improved accuracy of computer-assisted cervical pedicle screw insertion. J Neurosurg Spine 99:257–263

    Google Scholar 

  19. Kettenbach J, Kronreif G, Figl M et al (2004) Robot-assisted biopsy using ultrasound guidance: initial results from in vitro tests. Eur Radiol. DOI 10.1007/s00330-004-2487-x

  20. Schwald BF, Pedro M (2004) Learning of rigid point-based marker models for tracking with stereo camera systems. In: Brunnett G (ed) u.a.:Virtuelle und Erweiterte Realität 2004. 1. Workshop der GIFachgruppe VR/AR. Shaker, Aachen, pp 23–34

    Google Scholar 

  21. Schwald B, Malerczyk C (2002) Controlling virtual worlds using interaction spheres. In: Vidal CA (ed) 5th Symposium on virtual reality (SVR). Brazilian Computer Society, Fortaleza, Brazil

    Google Scholar 

  22. Wesarg S, Lauer TH, Firle EA, Dold C (2003) Several marker segmentation techniques for use with a medical AR system—a comparison. Computer assisted radiology and surgery 2003. In: Lemke HU, Vannier MW, Inamura K, Farman AG, Doi K, Reiber JHC (eds) Proc. 17th CARS, p 1303

  23. Schwald BS, Seibert H (2004) Registration tasks for a hybrid tracking system for medical augmented reality. In: Skala V (ed) European Association for Computer Graphics (Eurographics): J WSCG Proc Plzen, vol 12 no. 3, S411–S418 University of West Bohemia

  24. Gumprecht HK, Widenka DC, Lumenta CB (1999) BrainLab VectorVision neuronavigation system: technology and clinical experiences in 131 cases. Neurosurgery 44:97–104 (discussion 104–105)

    CAS  PubMed  Google Scholar 

  25. Laine T, Schlenzka D, Makitalo K, Tallroth K, Nolte LP, Visarius H (1997) Improved accuracy of pedicle screw insertion with computer-assisted surgery. A prospective clinical trial of 30 patients. Spine 22:1254–1258

    Article  CAS  PubMed  Google Scholar 

  26. Merloz P, Tonetti J, Pittet L et al (1998) Computer-assisted spine surgery. Comput Aided Surg 3:297–305

    CAS  PubMed  Google Scholar 

  27. Hummel J, Figl M, Kollmann C, Bergmann H, Birkfellner W (2002) Evaluation of a miniature electromagnetic position tracker. Med Phys 29:2205–2212

    Article  PubMed  Google Scholar 

  28. Birkfellner W, Watzinger F, Wanschitz F et al (1998) Systematic distortions in magnetic position digitizers. Med Phys 25:2242–2248

    Google Scholar 

  29. Barnett GH, Steiner CP, Weisenberger J (1995) Adaptation of personal projection television to a head-mounted display for intra-operative viewing of neuroimaging. J Image Guid Surg 1:109–112

    Google Scholar 

  30. Germano IM, Queenan JV (1998) Clinical experience with intracranial brain needle biopsy using frameless surgical navigation. Comput Aided Surg 3:33–39

    Google Scholar 

  31. Bolger C, Wigfield C, Melkent T, Smith K (1999) Frameless stereotaxy and anterior cervical surgery. Comput Aided Surg 4:322–327

    Google Scholar 

  32. Golfinos JG, Fitzpatrick BC, Smith LR, Spetzler RF (1995) Clinical use of a frameless stereotactic arm: results of 325 cases. J Neurosurg 83:197–205

    CAS  PubMed  Google Scholar 

  33. Montaudon M, Latrabe V, Pariente A, Corneloup O, Begueret H, Laurent F (2004) Factors influencing accuracy of CT-guided percutaneous biopsies of pulmonary lesions. Eur Radiol 14:1234–1240

    Google Scholar 

  34. Bale RJ, Lottersberger C, Vogele M et al (2002) A novel vacuum device for extremity immobilisation during digital angiography: preliminary clinical experiences. Eur Radiol 12:2890–2894

    CAS  PubMed  Google Scholar 

  35. Deurloo EE, Gilhuijs KG, Schultze Kool LJ, Muller SH (2001) Displacement of breast tissue and needle deviations during stereotactic procedures. Invest Radiol 36:347–353

    Google Scholar 

  36. Helbich TH, Matzek W, Fuchsjager MH (2004) Stereotactic and ultrasound-guided breast biopsy. Eur Radiol 14:383–393

    Article  CAS  PubMed  Google Scholar 

  37. Tokuda J, Morikawa S, Dohi T, Hata N (2004) Motion tracking in MR-guided liver therapy by using navigator echoes and projection profile matching. Acad Radiol 11:111–120

    Google Scholar 

  38. Sequeiros RB, Hyvonen P, Sequeiros AB et al (2003) MR imaging-guided laser ablation of osteoid osteomas with use of optical instrument guidance at 0.23 T. Eur Radiol 13:2309–2314

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the German Ministry of Education and Research (BMBF) research grant 01IRA09B.

We want to thank our development project partners at the Fraunhofer IGD, Cognitive Computing & Medical Imaging, Darmstadt, Germany, for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Fawad Khan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, M.F., Dogan, S., Maataoui, A. et al. Accuracy of biopsy needle navigation using the Medarpa system—computed tomography reality superimposed on the site of intervention. Eur Radiol 15, 2366–2374 (2005). https://doi.org/10.1007/s00330-005-2708-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-005-2708-y

Keywords

Navigation