Advertisement

European Radiology

, Volume 15, Issue 5, pp 872–880 | Cite as

Myocardial viability assessment in patients with highly impaired left ventricular function: comparison of delayed enhancement, dobutamine stress MRI, end-diastolic wall thickness, and TI201-SPECT with functional recovery after revascularization

  • M. GutberletEmail author
  • M. Fröhlich
  • S. Mehl
  • H. Amthauer
  • H. Hausmann
  • R. Meyer
  • H. Siniawski
  • J. Ruf
  • M. Plotkin
  • T. Denecke
  • B. Schnackenburg
  • R. Hetzer
  • R. Felix
Cardiac

Abstract

This study compared different magnetic resonance imaging (MRI) methods with Tl201 single photon emission computerized tomography (SPECT) and the “gold standard” for viability assessment, functional recovery after coronary artery bypass grafting (CABG). Twenty patients (64±7.3 years) with severely impaired left ventricular function (ejection fraction [EF] 28.6±8.7%) underwent MRI and SPECT before and 6 months after CABG. Wall-motion abnormalities were assessed by stress cine MRI using low-dose dobutamine. A segment with a nonreversible defect in Tl201-SPECT and a delayed enhancement (DE) in an area >50% of the entire segment, as well as an end-diastolic wall thickness <6 mm, was defined as nonviable. The mean postoperative EF (n=20) improved slightly from 28.6±8.7% to 32.2±12.4% (not significant). Using the Tl201-SPECT as the reference method, end-diastolic wall thickness, MRI-DE, and stress MRI showed high sensitivity of 94%, 93%, and 84%, respectively, but low specificities. Using the recovery of contractile function 6 months after CABG as the gold standard, MRI-DE showed an even higher sensitivity of 99%, end-diastolic wall thickness 96%, stress MRI 88%, and Tl201-SPECT 86%. MRI-DE showed advantages compared with the widely used Tl201-SPECT and all other MRI methods for predicting myocardial recovery after CABG.

Keywords

Myocardial viability Gated SPECT Delayed enhancement Dobutamine stress End-diastolic wall thickness 

Notes

Acknowledgements

The study was supported in part by grants from the Deutsche Forschungsgemeinschaft (BO-866/5-1). We thank Dr. Lutz Lüdemann and Dipl. math. Arne Janza for adapting the multimodality software Amira for our purposes. Furthermore, we thank the technicians, Mrs. Sylvia Foelz, Mrs. Virginia Ding-Reinelt, Mrs. Silvia Kurth, and Mrs. Catharina Oledtzki, and the medical editor, Ms. Anne Gale, for their assistance.

References

  1. 1.
    Kaul TK, Agnihotri AK, Fields BL, Riggins LS, Wyatt DA, Jones CR (1996) Coronary artery bypass grafting in patients with an ejection fraction of twenty percent or less. J Thorac Cardiovasc Surg 111:1001–1012Google Scholar
  2. 2.
    Hausmann H, Topp H, Siniawski H, Holz S, Hetzer R (1997) Decision-making in end-stage coronary artery disease: revascularization or heart transplantation? Ann Thorac Surg 64:1296–1301; discussion 1302CrossRefGoogle Scholar
  3. 3.
    Wesbey GE, Higgins CB, McNamara MT, Engelstad BL, Lipton MJ, Sievers R, Ehman RL, Lovin J, Brasch RC (1984) Effect of gadolinium-DTPA on the magnetic relaxation times of normal and infarcted myocardium. Radiology 153:165–169Google Scholar
  4. 4.
    Eichstaedt HW, Felix R, Dougherty FC, Langer M, Rutsch W, Schmutzler H (1986) Magnetic resonance imaging (MRI) in different stages of myocardial infarction using the contrast agent gadolinium-DTPA. Clin Cardiol 9:527–535Google Scholar
  5. 5.
    de Roos A, Doornbos J, van der Wall EE, van Voorthuisen AE (1988) MR imaging of acute myocardial infarction: value of Gd-DTPA. Am J Roentgenol 150:531–534Google Scholar
  6. 6.
    Ramani K, Judd RM, Holly TA, Parrish TB, Rigolin VH, Parker MA, Callahan C, Fitzgerald SW, Bonow RO, Klocke FJ (1998) Contrast magnetic resonance imaging in the assessment of myocardial viability in patients with stable coronary artery disease and left ventricular dysfunction. Circulation 98:2687–2694Google Scholar
  7. 7.
    Kim RJ, Fieno DS, Parrish TB, Harris K, Chen EL, Simonetti O, Bundy J, Finn JP, Klocke FJ, Judd RM (1999) Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 100:1992–2002PubMedGoogle Scholar
  8. 8.
    Sandstede JJ (2003) Assessment of myocardial viability by MR imaging. Eur Radiol 13:52–61PubMedGoogle Scholar
  9. 9.
    Lauerma K, Niemi P, Hanninen H, Janatuinen T, Voipio-Pulkki LM, Knuuti J, Toivonen L, Makela T, Makijarvi MA, Aronen HJ (2000) Multimodality MR imaging assessment of myocardial viability: combination of first-pass and late contrast enhancement to wall motion dynamics and comparison with FDG PET—initial experience. Radiology 217:729–736PubMedGoogle Scholar
  10. 10.
    Sandstede JJ, Lipke C, Beer M, Harre K, Pabst T, Kenn W, Neubauer S, Hahn D (2000) Analysis of first-pass and delayed contrast-enhancement patterns of dysfunctional myocardium on MR imaging: use in the prediction of myocardial viability. Am J Roentgenol 174:1737–1740Google Scholar
  11. 11.
    Baer FM, Voth E, Theissen P, Schicha H, Sechtem U (1994) Gradient-echo magnetic resonance imaging during incremental dobutamine infusion for the localization of coronary artery stenoses. Eur Heart J 15:218–225Google Scholar
  12. 12.
    Kuijpers D, van Dijkman PR, Janssen CH, Vliegenthart R, Zijlstra F, Oudkerk M (2004) Dobutamine stress MRI. Part II. Risk stratification with dobutamine cardiovascular magnetic resonance in patients suspected of myocardial ischemia. Eur Radiol 14:2046–2052CrossRefGoogle Scholar
  13. 13.
    Kuijpers D, Janssen CH, van Dijkman PR, Oudkerk M (2004) Dobutamine stress MRI. Part I. Safety and feasibility of dobutamine cardiovascular magnetic resonance in patients suspected of myocardial ischemia. Eur Radiol 14:1823–1828Google Scholar
  14. 14.
    Dendale P, Franken PR, Block P, Pratikakis Y, De Roos A (1998) Contrast enhanced and functional magnetic resonance imaging for the detection of viable myocardium after infarction. Am Heart J 135:875–880PubMedGoogle Scholar
  15. 15.
    Baer FM, Voth E, LaRosee K, Schneider CA, Theissen P, Deutsch HJ, Schicha H, Erdmann E, Sechtem U (1996) Comparison of dobutamine transesophageal echocardiography and dobutamine magnetic resonance imaging for detection of residual myocardial viability. Am J Cardiol 78:415–419CrossRefGoogle Scholar
  16. 16.
    Baer FM, Voth E, Schneider CA, Theissen P, Schicha H, Sechtem U (1995) Comparison of low-dose dobutamine-gradient-echo magnetic resonance imaging and positron emission tomography with [18F]fluorodeoxyglucose in patients with chronic coronary artery disease. A functional and morphological approach to the detection of residual myocardial viability. Circulation 91:1006–1015PubMedGoogle Scholar
  17. 17.
    Klein C, Nekolla SG, Bengel FM, Momose M, Sammer A, Haas F, Schnackenburg B, Delius W, Mudra H, Wolfram D, Schwaiger M (2002) Assessment of myocardial viability with contrast-enhanced magnetic resonance imaging: comparison with positron emission tomography. Circulation 105:162–167CrossRefPubMedGoogle Scholar
  18. 18.
    Penzkofer H, Wintersperger BJ, Knez A, Weber J, Reiser M (1999) Assessment of myocardial perfusion using multisection first-pass MRI and color-coded parameter maps: a comparison to 99mTc Sesta MIBI SPECT and systolic myocardial wall thickening analysis. Magn Reson Imaging 17:161–1670CrossRefGoogle Scholar
  19. 19.
    Nagueh SF, Mikati I, Weilbaecher D, Reardon MJ, Al-Zaghrini GJ, Cacela D, He ZX, Letsou G, Noon G, Howell JF, Espada R, Verani MS, Zoghbi WA (1999) Relation of the contractile reserve of hibernating myocardium to myocardial structure in humans. Circulation 100:490–496Google Scholar
  20. 20.
    Baer FM, Theissen P, Schneider CA, Voth E, Sechtem U, Schicha H, Erdmann E (1998) Dobutamine magnetic resonance imaging predicts contractile recovery of chronically dysfunctional myocardium after successful revascularization. J Am Coll Cardiol 31:1040–1048CrossRefGoogle Scholar
  21. 21.
    Kim RJ, Wu E, Rafael A, Chen EL, Parker MA, Simonetti O, Klocke FJ, Bonow RO, Judd RM (2000) The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 343:1445–1453CrossRefPubMedGoogle Scholar
  22. 22.
    Knuuti MJ, Saraste M, Nuutila P, Harkonen R, Wegelius U, Haapanen A, Bergman J, Haaparanta M, Savunen T, Voipio-Pulkki LM (1994) Myocardial viability: fluorine-18-deoxyglucose positron emission tomography in prediction of wall motion recovery after revascularization. Am Heart J 127:785–796CrossRefGoogle Scholar
  23. 23.
    Qureshi U, Nagueh SF, Afridi I, Vaduganathan P, Blaustein A, Verani MS, Winters WL Jr, Zoghbi WA (1997) Dobutamine echocardiography and quantitative rest-redistribution 201Tl tomography in myocardial hibernation. Relation of contractile reserve to 201Tl uptake and comparative prediction of recovery of function. Circulation 95:626–635Google Scholar
  24. 24.
    Ritchie JL, Bateman TM, Bonow RO, Crawford MH, Gibbons RJ, Hall RJ, O’Rourke RA, Parisi AF, Verani MS (1995) Guidelines for clinical use of cardiac radionuclide imaging. Report of the American College of Cardiology/American Heart Association Task Force on Assessment of Diagnostic and Therapeutic Cardiovascular Procedures (Committee on Radionuclide Imaging), developed in collaboration with the American Society of Nuclear Cardiology. J Am Coll Cardiol 25:521–547CrossRefGoogle Scholar
  25. 25.
    Germano G, Kiat H, Kavanagh PB, Moriel M, Mazzanti M, Su HT, Van Train KF, Berman DS (1995) Automatic quantification of ejection fraction from gated myocardial perfusion SPECT. J Nucl Med 36:2138–2147PubMedGoogle Scholar
  26. 26.
    Faber TL, Cooke CD, Folks RD, Vansant JP, Nichols KJ, DePuey EG, Pettigrew RI, Garcia EV (1999) Left ventricular function and perfusion from gated SPECT perfusion images: an integrated method. J Nucl Med 40:650–659PubMedGoogle Scholar
  27. 27.
    Hausmann H, Meyer R, Siniawski H, Pregla R, Gutberlet M, Amthauer H, Felix R, Hetzer R (2004) Factors excersising an influence on recovery on hibernating myocardium after coronary artery bypass grafting. Eur J Cardiothorac Surg 26(1):89–95Google Scholar
  28. 28.
    Simonetti OP, Kim RJ, Fieno DS, Hillenbrand HB, Wu E, Bundy JM, Finn JP, Judd RM (2001) An improved MR imaging technique for the visualization of myocardial infarction. Radiology 218:215–223PubMedGoogle Scholar
  29. 29.
    Al-Saadi N, Nagel E, Gross M, Bornstedt A, Schnackenburg B, Klein C, Klimek W, Oswald H, Fleck E (2000) Noninvasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance. Circulation 101:1379–1383Google Scholar
  30. 30.
    Nagel E, Lehmkuhl HB, Bocksch W, Klein C, Vogel U, Frantz E, Ellmer A, Dreysse S, Fleck E (1999) Noninvasive diagnosis of ischemia-induced wall motion abnormalities with the use of high-dose dobutamine stress MRI: comparison with dobutamine stress echocardiography. Circulation 99:763–770PubMedGoogle Scholar
  31. 31.
    Hunold P, Maderwald S, Eggebrecht H, Vogt FM, Barkhausen J (2004) Steady-state free precession sequences in myocardial first-pass perfusion MR imaging: comparison with TurboFLASH imaging. Eur Radiol 14:409–416CrossRefGoogle Scholar
  32. 32.
    vom Dahl J, Schulz G, Koch KC (1998) Diagnosis of myocardial viability in chronic myocardial ischemia with nuclear medicine techniques. Z Kardiol 87 (suppl 2):92–99CrossRefPubMedGoogle Scholar
  33. 33.
    Wagner A, Mahrholdt H, Holly TA, Elliott MD, Regenfus M, Parker M, Klocke FJ, Bonow RO, Kim RJ, Judd RM (2003) Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet 361:374–379CrossRefPubMedGoogle Scholar
  34. 34.
    Arnese M, Cornel JH, Salustri A, Maat A, Elhendy A, Reijs AE, Ten Cate FJ, Keane D, Balk AH, Roelandt JR et al (1995) Prediction of improvement of regional left ventricular function after surgical revascularization. A comparison of low-dose dobutamine echocardiography with 201Tl single-photon emission computed tomography. Circulation 91:2748–2752Google Scholar
  35. 35.
    Gallowitsch HJ, Unterweger O, Mikosch P, Kresnik E, Sykora J, Grimm G, Lind P (1999) Attenuation correction improves the detection of viable myocardium by thallium-201 cardiac tomography in patients with previous myocardial infarction and left ventricular dysfunction. Eur J Nucl Med 26:459–466CrossRefGoogle Scholar
  36. 36.
    Heller EN, DeMan P, Liu YH, Dione DP, Zubal IG, Wackers FJ, Sinusas AJ (1997) Extracardiac activity complicates quantitative cardiac SPECT imaging using a simultaneous transmission–emission approach. J Nucl Med 38:1882–1890Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • M. Gutberlet
    • 1
    Email author
  • M. Fröhlich
    • 1
  • S. Mehl
    • 1
  • H. Amthauer
    • 1
  • H. Hausmann
    • 2
  • R. Meyer
    • 2
  • H. Siniawski
    • 2
  • J. Ruf
    • 1
  • M. Plotkin
    • 1
  • T. Denecke
    • 1
  • B. Schnackenburg
    • 3
  • R. Hetzer
    • 2
  • R. Felix
    • 1
  1. 1.Charité, Campus Virchow-KlinikumKlinik für Strahlenheilkunde, Diagnostic Radiology and Nuclear MedicineBerlinGermany
  2. 2.German Heart Institute BerlinBerlinGermany
  3. 3.Philips Medical SystemsHamburgGermany

Personalised recommendations