Advertisement

European Radiology

, 16:1449 | Cite as

CAD for mammography: the technique, results, current role and further developments

  • Ansgar MalichEmail author
  • Dorothee R. Fischer
  • Joachim Böttcher
Breast

Abstract

CAD systems, developed to assist the radiologist in the detection of suspicious lesions on mammograms, are currently controversially discussed. The highly sensitive detection of malignant structures including priors by CAD is linked with a low specific performance and a high rate of falsely positive markings. This causes controversial results regarding the effect of CAD systems for the diagnosing radiologist. This review aims to give an overview of the current literature, to state the currently discussed controversial results of CAD and to give an outlook on the next developments, which are not limited to senology, but include many other applications of CAD systems in radiology.

Keywords

Breast X-ray Cancer CAD 

Notes

Acknowledgements

During this work on CAD systems, I was supported by many colleagues, especially by Dr. Werner A. Kaiser, whom I thank for his contributions.

References

  1. 1.
    Krebsatlas der Bundesrepublik Deutschland (1998) 3. Auflage Becker N, Wahrendorf J. Springer Verlag, Berlin, Heidelberg, New YorkGoogle Scholar
  2. 2.
    Alexander FE, Anderson TJ, Brown HK et al (1994) The Edinburgh randomised trial of breast cancer screening. Results after 10 years of follow - up. Br J Cancer 70:542–548PubMedGoogle Scholar
  3. 3.
    Andersson I, Aspegren K, Janzon L et al (1988) Mammographic screening and mortality from breast cancer. The Malmoe mammographic screening trail. BMJ 297:943–948PubMedCrossRefGoogle Scholar
  4. 4.
    Larsson LG, Andersson I, Bjurstam N et al (1997) Updated overview of the Swedish randomized trials on breast cancer screening with mammography. Age group 40–49 at randomization. J Natl Cancer Inst Monogr 22:57–61PubMedGoogle Scholar
  5. 5.
    Mushlin AI, Kouides RW, Shapiro DE (1998) Estimating the accuracy of screening mammography. A meta-analysis. Am J Prev Med 14:143–153CrossRefPubMedGoogle Scholar
  6. 6.
    Poplack SP, Tosteson AN, Grove MR, Wells WA, Carney PA (2000) Mammography in 53,803 women from New Hampshire mammopraphy network. Radiology 217:832–840PubMedGoogle Scholar
  7. 7.
    Zonderland HM, Coerkamp EG, Hermans J, van de VijverMJ, van Voorthuisen ADE (1999) Diagnosis of breast cancer. Contribution of US as an adjunct to mammography. Radiology 213:413–422PubMedGoogle Scholar
  8. 8.
    Blanks RG, Moss SM, McGahan CE, Quinn MJ, Babb PJ (2000) Effect of NHS breast screening programme on mortality from breast cancer in England and Wales, 1990–1998: comparison of observed with predicted mortality. BMJ 321:665–669CrossRefPubMedGoogle Scholar
  9. 9.
    Tayler P (2002) Computer aids for detection and diagnosis in mammography. Imaging 14:472–477Google Scholar
  10. 10.
    Bird RE (1990) Professional quality assurance for mammography screening programs. Radiology 177:8–10Google Scholar
  11. 11.
    Chan HP, Doi K, Vyborny CJ et al (1990) Improvement in radiologists detection of clustered microcalcifications on mammograms: the potential of computer-aided diagnosis. Invest Radiol 25:1102–1110PubMedCrossRefGoogle Scholar
  12. 12.
    Zheng B, Chang YH, Staiger M, Good W, Gur D (1995) Computer-aided detection of clustered microcalcifications in digitized mammograms. Acad Radiol 2:655–662CrossRefPubMedGoogle Scholar
  13. 13.
    Chan HP, Sahiner B, Helvie MA et al (1999) Improvement of radiologist’s characterization of mammographic masses by using computer-aided diagnosis: an ROC-study. Radiology 212:817–827PubMedGoogle Scholar
  14. 14.
    Thurfjell EL, Lernevall KA, Taube AAS (1994) Benefit of independent double reading in a population-based mammography screening program. Radiology 191:241–244PubMedGoogle Scholar
  15. 15.
    Fields S (1998) UK radiologist workforce survey-breast imaging service. Royal College of Radiologists Newsletter 54:12–14Google Scholar
  16. 16.
    Winsberg F, Elkin M, Macy J, Bordaz V, Weymouth W (1967) Detection of radiographic abnormalities in mammograms by means of optical scanning and computer analysis. Radiology 89:211–215Google Scholar
  17. 17.
    Taylor P, Champness J, Given-Wilson R, Johnston K, Potts H (2005) Impact of computer-aided detection prompts on the sensitivity and specificity of screening mammography. Health Technology Assessment 9:1–58PubMedGoogle Scholar
  18. 18.
    Astley SM, Gilbert FJ (2004) Computer-aided detection in mammography. Clin Radiol 59:390–399CrossRefPubMedGoogle Scholar
  19. 19.
  20. 20.
    Image Checker M 1000 System, Draft Document. 12.11.1997:1–35Google Scholar
  21. 21.
    Malich A, Boettcher J, Pfeil A et al (2003) Comparison of bone mineralization parameters calculated using double energy X-ray absorptiometry (DXA) vs. digital X-ray radiogrammetry (DXR) on patients with rheumatoid arthritis. IJR 3:http://www.ispub.com/ostia/index.php?xmlFilePath=journals/ijra/vol3n1/bone.xml
  22. 22.
    Acar B, Beaulieu CF, Paik DS, Yee J, Jeffrey RB, Napel SS (2002) 3D differential descriptors for improved computer aided detection (CAD) of colonic polyps in computed tomography colonography (CTC). Radiology 255(S):405Google Scholar
  23. 23.
    Helvie MA, Hadjiiski L, Makariou E et al (2004) Sensitivity of noncommercial computer-aided detection system for mammographic breast cancer detection: pilot clinical trial. Radiology 231:208–214PubMedCrossRefGoogle Scholar
  24. 24.
    Petrick N, Sahiner B, Chan HP, Helvie MA, Paquerault S, Hadjiiski LM (2002) Breast cancer detection: evaluation of a mass detection algorithm for computer-aided diagnosis-experience in 263 patients. Radiology 224:217–224PubMedCrossRefGoogle Scholar
  25. 25.
    Malich A, Marx C, Facius M, Boehm T, Fleck M, Kaiser WA (2001) Tumor detection rate of a new commercially available computer-aided detection system. Eur Radiol 12:2454–2459CrossRefGoogle Scholar
  26. 26.
    Funovics M, Schamp S, Lackner B, Wunderbaldinger P, Lechner G, Wolf G (1998) Computerassistierte diagnose in der mammographie: das R2 imagechecker-system in der detektion spikulierter läsionen. Wien Med Wschr 148:321–324PubMedGoogle Scholar
  27. 27.
    Jiang Y, Nishikawa RM, Schmidt RA, Metz CE, Doi K (1999) Comparison of Independent double reading and computer-aided diagnosis (CAD) for the diagnosis of breast lesions. Radiology 213(S):323Google Scholar
  28. 28.
    Thurfjell E, Thurfjell G, Egge E, Bjurstam N (1998) Sensitivity and specificity of computer-assisted breast cancer detection in mammography screening. Acta Radiol 39:384–388PubMedCrossRefGoogle Scholar
  29. 29.
    Chang YH, Zheng B, Gur D (1997) Computer-aided detection of clustered microcalcifications on digitized mammograms: a robustness experiment. Acad Radiol 4:415–418CrossRefPubMedGoogle Scholar
  30. 30.
    Ibrahim N, Fujita H, Hara T, Endo T (1997) Automated detection of clustered MC on mammograms. CAD system application to MIAS database. Phys Med Biol 42:2577–2589CrossRefPubMedGoogle Scholar
  31. 31.
    Chang YH, Zheng B, Gur D (1996) Robustness of computerized identification of MA in digitized mammograms. A preliminary assessment. Invest Radiol 31:563–568CrossRefPubMedGoogle Scholar
  32. 32.
    Nishikawa RM, Giger ML, Doi K et al (1994) Effect of case selection on the performance of computer-aided detection schemes. Med Phys 21:265–269CrossRefPubMedGoogle Scholar
  33. 33.
    Veldkamp WJ, Karssmeijer N (1998) Accurate segmentation and contrast measurement of microcalcifications in mammograms: a phantom study. Med Phys 25:1102–1110CrossRefPubMedGoogle Scholar
  34. 34.
    Sittek H, Perlet C, Helmberger R, Linsmeier E, Kessler M, Reiser M (1998) Computer assistierte analyse von mammographien in der klinischen routinediagnostik. Radiologe 38:848–852CrossRefPubMedGoogle Scholar
  35. 35.
    Warren Burhenne LJ, Wood SA, D’Orsi CJ, Feig SA, Kopans DB, O’Shaughnessy KF et al (2000) Potential contribution of computer-aided detection to the sensitivity of screening mammography. Radiology 215:554–562PubMedGoogle Scholar
  36. 36.
    Butler SA, Gabbay RJ, Kass DA, Siedler DE, O’Shaughnessy KF, Castellino RA (2004) Computer-aided detection in diagnostic mammography: detection of clinically unsuspected cancers. AJR Am J Roentgenol 183:1155–1511Google Scholar
  37. 37.
    Malich A (2006) Is there a diagnostic input of CAD in the detection of initially overseen or not detectable breast cancer lesions at mammograms? Presented ECR 2006Google Scholar
  38. 38.
    Malich A, Marx C, Facius M, Wurdinger S, Pfleiderer SO, Freesmeyer MG, Kaiser WA (2004) Value of computer-aided detection (CAD) of breast cancers on mammograms, which were not detected by radiologists. ECR 2004: Eur Radiol 14(S2):235Google Scholar
  39. 39.
    Marx C, Schütze B, Fleck M, O’Shaughnessy K, Kaiser WA (1998) Computer-aided diagnosis - help to detect breast cancer earlier? A retrospective analysis of 58 casa with previous mammograms. 10th International Congress on Senology, 31 May-4 June 1998, Porto, Portugal. Breast J 4(S):39Google Scholar
  40. 40.
    Blanks RG, Wallis MG, Given-Wilson RM (1999) Observer variability in cancer detection during routine repeat (incident) mammographic screening in a study of two versus one view mammography. J Med Screen 6:152–158PubMedGoogle Scholar
  41. 41.
    Marx C, Malich A, Grebenstein U, Kaiser WA (2004) Are unnecessary follow-up procedures induced by computer-aided diagnosis (CAD) in mammography? Comparison of mammographic diagnosis with and without use of CAD. Eur J Radiol 51:66–72CrossRefPubMedGoogle Scholar
  42. 42.
    Moberg K, Bjurstam N, Wilczek B, Rostgard L, Egge E, Muren C (2001) Computed assisted detection of interval cancers. Eur J Radiol 39:104–110CrossRefPubMedGoogle Scholar
  43. 43.
    Brem RF, Schoonjans JM (2001) Radiologist detection of microcalcifications with and without computer aided detection: a comparative study. Clin Radiol 56:150–154CrossRefPubMedGoogle Scholar
  44. 44.
    Malich A (2006) The role of CAD as a primer diagnostic tool and as an assisting aid for radiologists tested on an official mammography test collection. Presented ECR 2006Google Scholar
  45. 45.
    Freer TW, Ulissey MJ (2001) Screening mammography with computer-aided detection: prospective study of 12,860 patients in a community breast center. Radiology 220:781–786PubMedCrossRefGoogle Scholar
  46. 46.
    Morton M, Whaley D, Brandt K, Amrami K (2002) The effects of computer-aided detection (CAD) on a local/regional screening mammography program: prospective evaluation of 12,646 patients . RSNA 2002. Radiology 225:459Google Scholar
  47. 47.
    Alberdi E, Povykalo A, Strigini L, Ayton P (2004) Effects of incorrect computer-aided detection (CAD) output on human decision-making in mammography. Acad Radiol 11:909–918CrossRefPubMedGoogle Scholar
  48. 48.
    Yankaskas BC, Cleveland RJ, Schell MJ, Kozar R (2001) Association of recall rates with sensitivity and positive predictive values of screening mammography. AJR Am J Roentgenol 177:543–549PubMedGoogle Scholar
  49. 49.
    Haiaert D, Henderson J (1991) A comparison of interpretation of screening mammograms by a radiographer, a doctor and a radiologist: results and implications. Br J Clin Practise 45:43–45Google Scholar
  50. 50.
    Pauli R, Hammond S, Ansell J (1996) Comparison of radiographer/radiologist double film reading with single reading in breast cancer screening. J Med Screen 3:18–22PubMedGoogle Scholar
  51. 51.
    Balleyguier C, Kinkel K, Fermanian J et al (2005) Computer-aided detection (CAD) in mammography: does it help the junior of the senior radiologist? Eur J Radiol 54:90–96CrossRefPubMedGoogle Scholar
  52. 52.
    Blanks RG, Wallis MG, Given-Wilson RM (1999) Observer variability in cancer detection during routine repeat (incident) mammographic screening in a study of two versus one view mammography. J Med Screen 6:152–158PubMedGoogle Scholar
  53. 53.
    Malich A, Freesmeyer MG, Petrovitch A et al (2004) Clinical impact of an improved mammographic computer-aided detection (CAD) system in the detection of breast masses. ECR 2004. Eur Radiol 14(S2):328Google Scholar
  54. 54.
    Ehrenstein T, Kenzel PP, Hadijuana J et al (2000) Computer assisted diagnosis in mammography: evaluation of an expert system. Eur Radiol 10(S1):117Google Scholar
  55. 55.
    Gavrielides MA, Lo JY, Vargas-Voracek R, Floyd CE Jr (2000) Segmentation of suspicious clustered microcalcifications in mammograms. Med Phys 27:13–22CrossRefPubMedGoogle Scholar
  56. 56.
    Malich A, Vogel D, Facius M et al (2003) Evaluation einer möglichen erweiterten Anwendungsoption eines CAD-Systems als primäres Diagnostikum zum Ausschluß maligner Mikrokalzifikationen. Roefo Fortsch Geb Rontgenstr Neuen Bildgeb Verfahr 175:1225–1231CrossRefGoogle Scholar
  57. 57.
    Pamilo MS, Raulisto L, Dean PB (2003) An evaluation of computer-assisted detection (CAD) performance on screen-detected breast cancers. RSNA 2003. Radiology 229–690Google Scholar
  58. 58.
    Zheng Y, Zhang L, Clark RA (2001) False-positive reduction in CAD mass detection using a competitive classification strategy. Med Phys 28:250–258CrossRefPubMedGoogle Scholar
  59. 59.
    Young W, Destounis S, Bonaccio E, Zuley M (2002) Computer-aided detection in screening mammography: can it replace the second reader in an independent double read? Preliminary results of a prospective double blinded study. RSNA 2002. Radiology 225:600Google Scholar
  60. 60.
    Destounis SV, Di Nitto P, Logan-Young W, Bonaccio E, Zuley ML, Willison KM (2004) Can computer aided detection with double reading of screening mammograms help decrease the false negative rate? Initial experience. Radiology 232:578–584PubMedCrossRefGoogle Scholar
  61. 61.
    Ciatto S, Rosselli Del Turco M, Burke P, Visioli C, Paci E, Zappa M (2003) Comparison of standard and double reading and computer-aided detection (CAD) of interval cancers at prior negative screening mammograms: blind review. Br J Cancer 89:1645–1649CrossRefPubMedGoogle Scholar
  62. 62.
    Nelson MT, Lechner MCL (2002) Comparison of three commercially available FDA approved computer aided detection (CAD) systems. RSNA 2002. Radiology 225:600Google Scholar
  63. 63.
    Oda T, Kubo M, Kawata Y, Niki N, Nakimura R, Morijama N (2002) A computer-aided diagnosis system for lung cancer. Radiology 255(S):750Google Scholar
  64. 64.
    Goodman DN, Boutross-Tadross O, Jong RA (1995) Mammographic features of pure mucinous carcinoma of the breast with pathological correlation. Can Assoc Radiol J 46:296–301PubMedGoogle Scholar
  65. 65.
    Sheppard DG, Whitman GJ, Huynh PT, Sahin AA, Fornage BD, Stelling CB (2000) Tubular carcinoma of the breast: mammographic and sonographic features. AJR Am J Roentgenol 174:253–257PubMedGoogle Scholar
  66. 66.
    Tabar L, Dean PB (2002) Lehratlas der Mammographie, 2. Aufl. Thieme Verlag Stuttgart, New YorkGoogle Scholar
  67. 67.
    Malich A, Sauner D, Marx C et al (2003) Influence of size and histology on tumour detection rate of a computer-aided detection (CAD)-system. Radiology 228:851–856PubMedCrossRefGoogle Scholar
  68. 68.
    Brem RF, Schoonjans JM, Goodman SN, Nolten A, Askin FB, Gatewood OM (2001) Nonpalpable breast cancer: percutaneous diagnosis with 11- and 8-gauge stereotactic vacuum-assisted biopsy devices. Radiology 219:793–796PubMedGoogle Scholar
  69. 69.
    Malich A, Fischer D, Hansch A, Marx C, Freesmeyer MG, Kaiser WA (2005) Influence of mammographical density (according to ACR-criteria) on tumour detection using computer-assisted detection (CAD-) systems. J Digit Imaging 16: Epub ahead of print (PMID:15827823)Google Scholar
  70. 70.
    Ho WT, Lam PW (2003) Clinical performance of computer-aided detection in digital mammography. Clin Radiol 58:133–136CrossRefPubMedGoogle Scholar
  71. 71.
    Brem RF, Hoffmeister JW, Rapelyea JA et al (2005) Impact of breast density on computer-aided detection for breast cancer. AJR Am J Roentgenol 184:439–444PubMedGoogle Scholar
  72. 72.
  73. 73.
    iCAD device labelling, 2003 (Food and Drug Administration device)Google Scholar
  74. 74.
    Malich A, Azhari T, Boehm T, Fleck M, Kaiser W (2000) Reproducibility: an important factor determining the quality of computer aided detection (CAD) systems. Eur J Radiol 36:170–174CrossRefPubMedGoogle Scholar
  75. 75.
    Baker JA, Lo JY, Delong DM, Floyd CE (2004) Computer-aided detection in screening mammography: variability in cues. Radiology 233:411–417PubMedCrossRefGoogle Scholar
  76. 76.
    Zheng B, Hardesty L, Poller W, Sumkin J, Golla S (2003) Mammography with computer-aided detection: reproducibility assessment-initial experience. Radiology 228:58–62PubMedCrossRefGoogle Scholar
  77. 77.
    Zheng B, Gur D, Good WF, Hardesty LA (2004) A method to test the reproducibility and to improve performance of computer-aided detection schemes for digitised mammograms. Med Phys 31:2964–2972CrossRefPubMedGoogle Scholar
  78. 78.
    Baker JA, Rosen EL, Lo JY, Gimenez EI, Walsh R, Soo MS (2003) Computer-aided detection (CAD) in screening mammography: sensitivity of commercial CAD systems for detecting architectural distortion. AJR Am J Roentgenol 181:1083–1088PubMedGoogle Scholar
  79. 79.
    Chen W, Giger ML, Newstead GM, Bick U (2004) Computerized analysis of contrast-enhanced MR images of the breast: automated bias field correction and identification of characteristic signal-time curves. RSNA 2004. Radiology 233(S):448Google Scholar
  80. 80.
    Wismueller A, Leinsinger G, Meyer-Baese A, Wiegard R, Lange O, Reiser M (2004) Computer-aided diagnosis in dynamic breast MRI: can machine learning by neural networks improve the diagnostic accuracy in suspicious lesions? RSNA 2004. Radiology 233 (S):449Google Scholar
  81. 81.
    Drukker K, Giger ML (2004) Robustness of a computerized lesion detection and classifiction scheme for breast ultrasound across acquisition platforms. RSNA 2004. Radiology 233 (S):447Google Scholar
  82. 82.
    Helvie MA, Kapur A, Rondot P, Roubidoux MA, Goodsitt MM (2004) Combined digital mammography/automated 3D whole breast ultrasound system for breast imaging: patient acceptance of prototype scanning system. RSNA 2004. Radiology 233(S):654Google Scholar
  83. 83.
    Pietka E, Pospiech-Kurkowa P, Gertych A, Cao F, Huang HK (2002) Computer-assisted bone age assessment: image analysis and fuzzy clarification. Radiology 225(S):751Google Scholar
  84. 84.
    Malich A, Freesmeyer MG, Mentzel HJ et al (2003) Normative values of bone parameters of children and adolescents using digital computer-assisted radiogrammetry (DXR). J Clin Densitom 6:103–112CrossRefPubMedGoogle Scholar
  85. 85.
    Malich A, Boettcher J, Pfeil A et al (2004) Impact of technical conditions of X-ray imaging on reproducibility and precision of digital computer-assisted X-ray radiogrammetry (DXR). Skeletal Radiol 33:698–703CrossRefPubMedGoogle Scholar
  86. 86.
    Boettcher J, Malich A, Pfeil A et al (2004) Digital X-ray radiogrammetry (DXR) as a new method for measurement of bone mineral density in patients suffering from rheumatoid arthritis. Eur Radiol 14:631–637CrossRefPubMedGoogle Scholar
  87. 87.
    Jorgensen JT, Andersen PB, Rosholm A, Bjarnason NH (2000) Digital X-ray radiogrammetry: a new appendicular bone densitometric method with high precision. Clin Physiol 20:330–335CrossRefPubMedGoogle Scholar
  88. 88.
    Bouxsein ML, Palermo L, Yeung C, Black DM (2002) Digital X-ray radiogrammetry predicts hip, wrist and vertebral fracture in elderly women: a prospective analysis from the study of osteoporotic fractures. Osteoporos Int 13:358–365CrossRefPubMedGoogle Scholar
  89. 89.
    Hyldstrup L, Jorgensen JT, Sorensen TK, Baeksgaard L (2001) Response of cortical bone to antiresorptive treatment. Calcif Tissue Int 68:135–139CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Ansgar Malich
    • 1
    Email author
  • Dorothee R. Fischer
    • 2
  • Joachim Böttcher
    • 2
  1. 1.Institute of Diagnostic RadiologyNordhausenGermany
  2. 2.Institute of Diagnostic and Interventional RadiologyFriedrich Schiller University of JenaJenaGermany

Personalised recommendations