European Radiology

, Volume 16, Issue 5, pp 1138–1146 | Cite as

Cluster analysis of signal-intensity time course in dynamic breast MRI: does unsupervised vector quantization help to evaluate small mammographic lesions?

  • Gerda Leinsinger
  • Thomas Schlossbauer
  • Michael Scherr
  • Oliver Lange
  • Maximilian Reiser
  • Axel Wismüller
Breast

Abstract

We examined whether neural network clustering could support the characterization of diagnostically challenging breast lesions in dynamic magnetic resonance imaging (MRI). We examined 88 patients with 92 breast lesions (51 malignant, 41 benign). Lesions were detected by mammography and classified Breast Imaging and Reporting Data System (BIRADS) III (median diameter 14 mm). MRI was performed with a dynamic T1-weighted gradient echo sequence (one precontrast and five postcontrast series). Lesions with an initial contrast enhancement ≥50% were selected with semiautomatic segmentation. For conventional analysis, we calculated the mean initial signal increase and postinitial course of all voxels included in a lesion. Secondly, all voxels within the lesions were divided into four clusters using minimal-free-energy vector quantization (VQ). With conventional analysis, maximum accuracy in detecting breast cancer was 71%. With VQ, a maximum accuracy of 75% was observed. The slight improvement using VQ was mainly achieved by an increase of sensitivity, especially in invasive lobular carcinoma and ductal carcinoma in situ (DCIS). For lesion size, a high correlation between different observers was found (R2 = 0.98). VQ slightly improved the discrimination between malignant and benign indeterminate lesions (BIRADS III) in comparison with a standard evaluation method.

Keywords

Breast cancer MR mammography Vector quantization 

References

  1. 1.
    Hollingsworth AB, Stough RG (2003) The emerging role of breast magnetic resonance imaging. J Okla State Med Assoc 96(7):299–307PubMedGoogle Scholar
  2. 2.
    Baum F, Fischer U, Vosshenrich R, Grabbe E (2002) Classification of hypervascularized lesions in CE MR imaging of the breast. Eur Radiol 12:1087–1092CrossRefPubMedGoogle Scholar
  3. 3.
    Fischer U, von Heyden D, Vosshenrich I, Vieweg I, Grabbe E (1993) Signal characteristics of malignant and benign lesions in dynamic 2D-MRT of the breast [German]. RöFo 158(4): 287–292PubMedGoogle Scholar
  4. 4.
    Heywang-Kobrunner SH, Bick U, Bradley WG Jr, Bone B, Casselman J, Coulthard A, Fischer U, Muller-Schimpfle M, Oellinger H, Patt R, Teubner J, Friedrich M, Newstead G, Holland R, Schauer A, Sickles EA, Tabar L, Waisman J, Wernecke KD (2001) International investigation of breast MRI: results of a multicentre study (11 sites) concerning diagnostic parameters for contrast-enhanced MRI based on 519 histopathologically correlated lesions. Eur Radiol 11(4): 531–546CrossRefPubMedGoogle Scholar
  5. 5.
    Kuhl CK, Mielcareck P, Klaschik S, Leutner C, Wardelmann E, Gieseke J, Schild, HH (1999). Dynamic Breast MR Imaging: Are Signal Intensity Time Course Data Useful for Differential Diagnosis of Enhancing Lesions? Radiology 211:101–110PubMedGoogle Scholar
  6. 6.
    Wismueller A, Dersch DR, Lipinski B, Hahn K, Auer D (1998) A neural network approach to functional MRI pattern analysis—clustering of time-series by hierarchical vector quantization. In: Niklasson L, Boden M, Ziemke T (eds) Perspectives in neural computing. Springer, Berlin Heidelberg New York, pp 123–128Google Scholar
  7. 7.
    Wismüller A, Lange O, Dersch DR, Leinsinger GL, Hahn K, Pütz B, Auer D (2002) Cluster analysis of biomedical image time-series. Int J Computer Vision 46(2):103–128CrossRefGoogle Scholar
  8. 8.
    Vomweg TW, Buscema M, Kauczor HU (2003) Improved artificial neural networks in prediction of malignancy of lesions in contrast-enhanced MR-mammography. Med Phys 30(9):2350–2359CrossRefPubMedGoogle Scholar
  9. 9.
    Vomweg TW, Teifke A, Kauczor HU, Achenbach T, Rieker O, Schreiber WG, Heitmann KR, Beier T, Thelen M (2005) Self-organizing neural networks for automatic detection and classification of contrast (media) enhancement of lesions in dynamic MR-mammography. Rofo 177(5):703–713PubMedGoogle Scholar
  10. 10.
    Dersch DR. Eigenschaften neuronaler Vektorquantisierer und ihre Anwendung in der Sprachverarbeitung. Verlag Harri Deutsch, Reihe Physik 1996 (54). ISBN 3–8171–1492–3Google Scholar
  11. 11.
    Rose K, Gurewitz E, Fox G (1990) A deterministic annealing approach to clustering. Pattern Recognition Letters 11:589–594CrossRefGoogle Scholar
  12. 12.
    Rose K, Gurewitz E, Fox GC (1992) Vector Quantization by Deterministic Annealing. IEEE Transactions on Information Theory 4:1249–1257CrossRefGoogle Scholar
  13. 13.
    Heywang-Köbrunner SH, Viehweg P, Heinig A, Kuchler C.(1997) Contrast-enhanced MRI of the breast: accuracy, value, controversies, solutions. Eur J Radiol 24:94–108PubMedCrossRefGoogle Scholar
  14. 14.
    Kaiser WA, Zeitler E (1989) MR imaging of the breast: fast imaging sequences with and without Gd-DTPA. Preliminary observations. Radiology 170:681PubMedGoogle Scholar
  15. 15.
    Harms SE, Flamig DP, Hesley KL, Meiches MD, Jensen RA , Evans WP, Savino DA, Wells RV (1993). MR imaging of the breast with rotating delivery of excitation off resonance: clinical experience with pathologic correlation. Radiology 87:493–501Google Scholar
  16. 16.
    Orel SG, Mendonca MH, Reynolds C, Schnall MD, Solin LJ, Sullivan DC (1997) MR imaging of ductal carcinoma in situ. Radiology 202:413–420PubMedGoogle Scholar
  17. 17.
    Orel SG, Schnall MD, Powell CM, Hochmann MG, Solin LJ, Fowble BL, Torosian MH, Rosario EF (1995) Staging of suspected breast cancer: effect of MR imaging and MR-guided biopsy. Radiology 196:115–122PubMedGoogle Scholar
  18. 18.
    Kuhl CK, Bieling H, Gieseke J (1997) Healthy premenopausal breast parenchyma in dynamic contrast-enhanced MR imaging of the breast: Normal contrast medium enhancement and cyclical-phase dependency. Radiology 203:137–144PubMedGoogle Scholar
  19. 19.
    Müller-Schimpfle M, Ohmenhäuser K, Stoll P (1997) Menstrual cycle and age: influence on parenchymal contrast medium enhancement in MR imaging of the breast. Radiology 203:145–149PubMedGoogle Scholar
  20. 20.
    Gilles R, Guinebretiere JM, Lucidarme O (1994) Nonpalpable breast tumors: diagnosis with contrast-enhanced subtraction dynamic MR imaging. Radiology 191:625–631PubMedGoogle Scholar
  21. 21.
    Kuhl CK, Seibert C, Sommer T, Kreft B, Gieseke J, Schild HH (1995) Focal and diffuse lesions in dynamic MR-mammography of healthy probands. RöFo 163(3):219–224PubMedGoogle Scholar
  22. 22.
    Krishnan S, Chenevert TL, Helvie MA, Londy FL (1999) Linear motion correction in three dimensions applied to dynamic gadolinium enhanced breast imaging. Med Phys 26(5):707–714CrossRefPubMedGoogle Scholar
  23. 23.
    Zuo CS, Jiang A, Buff BL, Mahon TG, Wong TZ (1996) Automatic motion correction for breast MR imaging. Radiology 198(3):903–906PubMedGoogle Scholar
  24. 24.
    Erwin E, Obermayer K, Schulten K (1992) Self-organizing maps: Stationary states, metastability, and convergence rate. Biol Cyber 61:35–45CrossRefGoogle Scholar
  25. 25.
    Graepel T, Burger M, Obermayer K (1997) Phase transitions in stochastic self-organizing maps. Physical Review E 56 (4):3876–3890CrossRefGoogle Scholar
  26. 26.
    Mussurakis S, Buckley DL, Bowsley SJ, Carleton PJ, Fox JN, Turnbull LW, Horsman A (1995) Dynamic contrast-enhanced magnetic resonance imaging of the breast combined with pharmacokinetic analysis of gadolinium-DTPA uptake in the diagnosis of local recurrence of early stage breast carcinoma. Invest Radiol 30(11):650–662PubMedCrossRefGoogle Scholar
  27. 27.
    Liu PF, Debatin JF, Caduff RF, Kacl G, Garzoli E, Krestin GP (1998) Improved diagnostic accuracy in dynamic contrast enhanced MRI of the breast by combined quantitative and qualitative analysis. Br J Radiol 71(845):501–509PubMedGoogle Scholar
  28. 28.
    Kuhl CK (2000) MRI of breast tumors. European Radiology 10:46–58CrossRefPubMedGoogle Scholar
  29. 29.
    Fischer U, Westerhof JP, Brinck U, Korabiowska M, Schauer A, Grabbe E (1996) Ductal carcinoma in situ in dynamic MR-mammography at 1.5 T. Röfo 164(4):290–294PubMedGoogle Scholar
  30. 30.
    Sittek H, Kessler M, Heuck AF, Bredl T, Perlet C, Kunzer I, Lebeau A, Untch M, Reiser M (1997) Morphology and contrast enhancement of ductal carcinoma in situ in dynamic 1.0 T MR mammography. RöFo 167(3):247–251PubMedGoogle Scholar
  31. 31.
    Westerhof JP, Fischer U, Moritz JD, Oestmann JW (1998) MR imaging of mammographically detected clustered microcalcifications: is there any value? Radiology 207(3):675–681PubMedGoogle Scholar
  32. 32.
    Morakkabati-Spitz N, Leutner C, Schild H, Traeber F, Kuhl C (2005). Diagnostic usefulness of segmental and linear enhancement in dynamic breast MRI. Eur Radiol 15:2010–2017CrossRefPubMedGoogle Scholar
  33. 33.
    C. Szabó BK, Wiberg MK, Boné B, Aspelin P (2004). Application of artificial neural networks to the analysis of dynamic MR imaging features of the breast. Eur Radiol 14:1217–1225CrossRefPubMedGoogle Scholar
  34. 34.
    Lucht RAE, Knopp MV, Brix G (2001) Classification of signal-time curves from dynamic MR mammography by neural networks. Magn Reson Imaging 19:51–57CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Gerda Leinsinger
    • 1
  • Thomas Schlossbauer
    • 1
  • Michael Scherr
    • 1
  • Oliver Lange
    • 1
  • Maximilian Reiser
    • 1
  • Axel Wismüller
    • 1
  1. 1.Institute for Clinical Radiology University of MunichMunichGermany

Personalised recommendations