Skip to main content
Log in

Assessment of ventricular function and mass by cardiac magnetic resonance imaging

  • Cardiac
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Cardiac magnetic resonance imaging is currently the technique of choice for precise measurements of ventricular volumes, function and left ventricular (LV) mass. The technique is 3D and hence independent of geometrical assumptions; this, along with its excellent definition of endocardial and epicardial borders, makes it highly accurate and reproducible. Cardiac magnetic resonance (CMR) is particularly useful in research, as it is highly sensitive to small changes in ejection fraction and mass, and only a small number of subjects are required for a study. The excellent reproducibility makes temporal follow-up of any individual patient in the clinical setting a realistic possibility. This review examines the merits of CMR and describes the techniques used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Schillaci G, Verdecchia P, Porcellati C, Cuccurullo O, Cosco C, Perticone F (2000) Continuous relation between left ventricular mass and cardiovascular risk in essential hypertension. Hypertension 35:580–586

    CAS  PubMed  Google Scholar 

  2. Lorenz CH, Walker ES, Graham TP Jr, Powers TA (1995) Right ventricular performance and mass by use of cine MRI late after atrial repair of transposition of the great arteries. Circulation 92:II233–II239

    CAS  PubMed  Google Scholar 

  3. St John Sutton M, Otterstat JE, Plappert T, Parker A, Sekarski D, Keane MG, Poole-Wilson P, Lubsen K (1998) Quantitation of left ventricular volumes and ejection fraction in post-infarction patients from biplane and single plane two-dimensional echocardiograms. A prospective longitudinal study of 371 patients. Eur Heart J 19:808–816

    Article  PubMed  Google Scholar 

  4. Salcedo EE, Gockowski K, Tarazi RC (1979) Left ventricular mass and wall thickness in hypertension. Comparison of M mode and two dimensional echocardiography in two experimental models. Am J Cardiol 44:936–940

    Article  CAS  PubMed  Google Scholar 

  5. Missouris CG, Forbat SM, Singer DR, Markandu ND, Underwood R, MacGregor GA (1996) Echocardiography overestimates left ventricular mass: a comparative study with magnetic resonance imaging in patients with hypertension. J Hypertens 14:1005–1010

    CAS  PubMed  Google Scholar 

  6. Myerson SG, Montgomery HE, World MJ, Pennell DJ (2002) Left ventricular mass: reliability of M-mode and 2-dimensional echocardiographic formulas. Hypertension 40:673–678

    Article  CAS  PubMed  Google Scholar 

  7. Collins HW, Kronenberg MW, Byrd BFd (1989) Reproducibility of left ventricular mass measurements by two-dimensional and M-mode echocardiography. J Am Coll Cardiol 14:672–676

    CAS  PubMed  Google Scholar 

  8. Bellenger NG, Burgess MI, Ray SG, Lahiri A, Coats AJ, Cleland JG, Pennell DJ (2000) Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionuclide ventriculography and cardiovascular magnetic resonance; are they interchangeable? Eur Heart J 21:1387–1396

    Article  CAS  PubMed  Google Scholar 

  9. Buck T, Hunold P, Wentz KU, Tkalec W, Nesser HJ, Erbel R (1997) Tomographic three-dimensional echocardiographic determination of chamber size and systolic function in patients with left ventricular aneurysm: comparison to magnetic resonance imaging, cineventriculography, and two-dimensional echocardiography. Circulation 96:4286–4297

    CAS  PubMed  Google Scholar 

  10. Gutberlet M, Abdul-Khaliq H, Grothoff M, Schroter J, Schmitt B, Rottgen R, Lange P, Vogel M, Felix R (2003) Evaluation of left ventricular volumes in patients with congenital heart disease and abnormal left ventricular geometry. Comparison of MRI and transthoracic 3-dimensional echocardiography. ROFO Fortschr Geb Rontgenstr Bildgeb Verfahr 175:942–951

    Article  CAS  Google Scholar 

  11. Tsujita-Kuroda Y, Zhang G, Sumita Y, Hirooka K, Hanatani A, Nakatani S, Yasumura Y, Miyatake K, Yamagishi M (2000) Validity and reproducibility of echocardiographic measurement of left ventricular ejection fraction by acoustic quantification with tissue harmonic imaging technique. J Am Soc Echocardiogr 13:300–305

    Article  CAS  PubMed  Google Scholar 

  12. Kim WY, Sogaard P, Kristensen BO, Egeblad H (2001) Measurement of left ventricular volumes by 3-dimensional echocardiography with tissue harmonic imaging: a comparison with magnetic resonance imaging. J Am Soc Echocardiogr 14:169–179

    Article  CAS  PubMed  Google Scholar 

  13. Iskandrian AE, Germano G, VanDecker W, Ogilby JD, Wolf N, Mintz R, Berman DS (1998) Validation of left ventricular volume measurements by gated SPECT 99mTc-labeled sestamibi imaging. J Nucl Cardiol 5:574–578

    Article  CAS  PubMed  Google Scholar 

  14. Sharir T, Germano G, Kavanagh PB, Lai S, Cohen I, Lewin HC, Friedman JD, Zellweger MJ, Berman DS (1999) Incremental prognostic value of post-stress left ventricular ejection fraction and volume by gated myocardial perfusion single photon emission computed tomography. Circulation 100:1035–1042

    CAS  PubMed  Google Scholar 

  15. Ostrzega E, Maddahi J, Honma H, Crues JV, 3rd, Resser KJ, Charuzi Y, Berman DS (1989) Quantification of left ventricular myocardial mass in humans by nuclear magnetic resonance imaging. Am Heart J 117:444–452

    Article  CAS  PubMed  Google Scholar 

  16. Sakuma H, Fujita N, Foo TK, Caputo GR, Nelson SJ, Hartiala J, Shimakawa A, Higgins CB (1993) Evaluation of left ventricular volume and mass with breath-hold cine MR imaging. Radiology 188:377–380

    CAS  PubMed  Google Scholar 

  17. Florentine MS, Grosskreutz CL, Chang W, Hartnett JA, Dunn VD, Ehrhardt JC, Fleagle SR, Collins SM, Marcus ML, Skorton DJ (1986) Measurement of left ventricular mass in vivo using gated nuclear magnetic resonance imaging. J Am Coll Cardiol 8:107–112

    CAS  PubMed  Google Scholar 

  18. Keller AM, Peshock RM, Malloy CR, Buja LM, Nunnally R, Parkey RW, Willerson JT (1986) In vivo measurement of myocardial mass using nuclear magnetic resonance imaging. J Am Coll Cardiol 8:113–117

    CAS  PubMed  Google Scholar 

  19. Germain P, Roul G, Kastler B, Mossard JM, Bareiss P, Sacrez A (1992) Inter-study variability in left ventricular mass measurement. Comparison between M-mode echography and MRI. Eur Heart J 13:1011–1019

    CAS  PubMed  Google Scholar 

  20. Myerson G, Montgomery HE, Whittingham M, Jubb M, World M, Humphries S, Pennell DJ (2001) Left ventricular hypertroph with exercise and ACE gene insertion/deletion polymorphism, a randomised controlled trial with losartan. Circulation 103:226–230

    CAS  PubMed  Google Scholar 

  21. Myerson SG, Bellenger NG, Pennell DJ (2002) Assessment of left ventricular mass by cardiovascular magnetic resonance. Hypertension 39:750–755

    Article  CAS  PubMed  Google Scholar 

  22. Grothues F, Smith GC, Moon JC, Bellenger NG, Collins P, Klein HU, Pennell DJ (2002) Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am J Cardiol 90:29–34

    Article  PubMed  Google Scholar 

  23. Mogelvang J, Stubgaard M, Thomsen C, Henriksen O (1988) Evaluation of right ventricular volumes measured by magnetic resonance imaging. Eur Heart J 9:529–533

    CAS  PubMed  Google Scholar 

  24. Mackey ES, Sandler MP, Campbell RM, Graham TP Jr, Atkinson JB, Price R, Moreau GA (1990) Right ventricular myocardial mass quantification with magnetic resonance imaging. Am J Cardiol 65:529–532

    Article  CAS  PubMed  Google Scholar 

  25. Pattynama PM, Lamb HJ, Van der Velde EA, Van der Geest RJ, Van der Wall EE, De Roos A (1995) Reproducibility of MRI-derived measurements of right ventricular volumes and myocardial mass. Magn Reson Imaging 13:53–63

    Article  CAS  PubMed  Google Scholar 

  26. Helbing WA, Rebergen SA, Maliepaard C, Hansen B, Ottenkamp J, Reiber JH, de Roos A (1995) Quantification of right ventricular function with magnetic resonance imaging in children with normal hearts and with congenital heart disease. Am Heart J 130:828–837

    CAS  PubMed  Google Scholar 

  27. Helbing WA, Bosch HG, Maliepaard C, Rebergen SA, van der Geest RJ, Hansen B, Ottenkamp J, Reiber JH, de Roos A (1995) Comparison of echocardiographic methods with magnetic resonance imaging for assessment of right ventricular function in children. Am J Cardiol 76:589–594

    Article  CAS  PubMed  Google Scholar 

  28. Hazekamp MG, Kurvers MM, Schoof PH, Vliegen HW, Mulder BM, Roest AA, Ottenkamp J, Dion RA (2001) Pulmonary valve insertion late after repair of Fallot’s tetralogy. Eur J Cardiothorac Surg 19:667–670

    Article  CAS  PubMed  Google Scholar 

  29. Discigil B, Dearani JA, Puga FJ, Schaff HV, Hagler DJ, Warnes CA, Danielson GK (2001) Late pulmonary valve replacement after repair of tetralogy of Fallot. J Thorac Cardiovasc Surg 121:344–351

    Article  CAS  PubMed  Google Scholar 

  30. Fieno DS, Jaffe WC, Simonetti OP, Judd RM, Finn JP. TrueFISP (2002) Assessment of accuracy for measurement of left ventricular mass in an animal model. J Cardiovasc Magn Reson Imaging 15:526–531

    Article  Google Scholar 

  31. Plein S, Bloomer TN, Ridgway JP, Jones TR, Bainbridge GJ, Sivananthan MU (2001) Steady-state free precession magnetic resonance imaging of the heart: comparison with segmented k-space gradient-echo imaging. J Magn Reson Imaging 14:230–236

    Article  CAS  PubMed  Google Scholar 

  32. Alfakih K, Thiele H, Plein S, Bainbridge GJ, Ridgway JP, Sivananthan MU (2002) Comparison of right ventricular volume measurement between segmented k-space gradient-echo and steady-state free precession magnetic resonance imaging. J Magn Reson Imaging 16:253–258

    Article  PubMed  Google Scholar 

  33. Bloomer TN, Plein S, Radjenovic A, Higgins DM, Jones TR, Ridgway JP, Sivananthan MU (2001) Cine MRI using steady state free precession in the radial long axis orientation is a fast accurate method for obtaining volumetric data of the left ventricle. J Magn Reson Imaging 14:685–692

    Article  CAS  PubMed  Google Scholar 

  34. Alfakih K, Plein S, Bloomer T, Jones T, Ridgway J, Sivananthan M (2003) Comparison of right ventricular volume measurements between axial and short axis orientation using steady-state free precession magnetic resonance imaging. J Magn Reson Imaging 18:25–32

    Article  PubMed  Google Scholar 

  35. Lorenz CH, Walker ES, Morgan VL, Klein SS, Graham TP Jr (1999) Normal human right and left ventricular mass, systolic function, and gender differences by cine magnetic resonance imaging. J Cardiovasc Magn Reson 1:7–21

    CAS  PubMed  Google Scholar 

  36. Alfakih K, Plein S, Thiele H, Jones T, Ridgway JP, Sivananthan MU (2003) Normal human left and right ventricular dimensions for MRI as assessed by turbo gradient echo and steady-state free precession imaging sequences. J Magn Reson Imaging 17:323–329

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohan Sivananthan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alfakih, K., Reid, S., Jones, T. et al. Assessment of ventricular function and mass by cardiac magnetic resonance imaging. Eur Radiol 14, 1813–1822 (2004). https://doi.org/10.1007/s00330-004-2387-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-004-2387-0

Keywords

Navigation