European Radiology

, Volume 14, Issue 2, pp 309–317 | Cite as

Can pre-operative contrast-enhanced dynamic MR imaging for prostate cancer predict microvessel density in prostatectomy specimens?

  • Heinz-Peter SchlemmerEmail author
  • Jonas Merkle
  • Rainer Grobholz
  • Tim Jaeger
  • Maurice Stephan Michel
  • Axel Werner
  • Jan Rabe
  • Gerhard van Kaick


The aim of this study was to correlate quantitative dynamic contrast-enhanced MRI (DCE MRI) parameters with microvessel density (MVD) in prostate carcinoma. Twenty-eight patients with biopsy-proven prostate carcinoma were examined by endorectal MRI including multiplanar T2- and T1-weighted spin-echo and dynamic T1-weighted turbo-FLASH MRI during and after intravenous Gd-DTPA administration. Microvessels were stained on surgical specimens using a CD31 monoclonal antibody. The MVD was quantified in hot spots by counting (MVC) and determining the area fraction by morphometry (MVAF). The DCE MRI data were analyzed using an open pharmacokinetic two-compartment model. In corresponding anatomic locations the time shift (Δt) between the beginning of signal enhancement of cancer and adjacent normal prostatic tissue, the degree of contrast enhancement and the contrast exchange rate constant (k21) were calculated. The MVC and MVAF were elevated in carcinoma (p<0.001 and p=0.002, respectively) and correlated to k21 (r=0.62, p<0.001 and r=0.80, p<0.001, respectively). k21-values of carcinoma were significantly higher compared with normal peripheral but not central zone tissue. Δt was longer in high compared with low-grade tumors (p=0.025). The DCE MRI can provide important information about individual MVD in prostate cancer, which may be helpful for guiding biopsy and assessing individual prognosis.


Prostate carcinoma Dynamic contrast-enhanced MR imaging Angiogenesis Microvessel density 



We are grateful to M. Späth and A. Kappeler for technical assistance.


  1. 1.
    Landis SH, Murray T, Bolden S, Wingo PA (1998) Cancer statistics. CA Cancer J Clin 48:6–29PubMedGoogle Scholar
  2. 2.
    Carter HB, Coffey DS (1990) The prostate: an increasing medical problem. Prostate 16:39–48PubMedGoogle Scholar
  3. 3.
    Sarma AV, Schottenfeld D (2002) Prostate cancer incidence, mortality, and survival trends in the United States: 1981–2001. Semin Urol Oncol 20:3–9CrossRefPubMedGoogle Scholar
  4. 4.
    Quinn SF, Franzini DA, Demlow TA, Rosencrantz DR, Kim J, Hanna RM, Szumowski J (1994) MR imaging of prostate cancer with an endorectal surface coil technique: correlation with whole-mount specimens. Radiology 190:323–327PubMedGoogle Scholar
  5. 5.
    Yu KK, Hricak H, Alagappan R, Chernoff DM, Bacchetti P, Zaloudek CJ (1997) Detection of extracapsular extension of prostate carcinoma with endorectal and phased-array coil MR imaging: multivariate feature analysis. Radiology 202:697–702PubMedGoogle Scholar
  6. 6.
    Jager GJ, Severens JL, Thornbury JR, Rosette JJ de la, Ruijs SH, Barentsz JO (2000) Prostate cancer staging: should MR imaging be used? A decision analytic approach. Radiology 215:445–451PubMedGoogle Scholar
  7. 7.
    Kurhanewicz J, Vigneron DB, Males RG, Swanson MG, Yu KK, Hricak H (2000) The prostate: MR imaging and spectroscopy. Present and future. Radiol Clin North Am 38:115–138PubMedGoogle Scholar
  8. 8.
    Bostwick DG, Grignon DJ, Hammond ME, Amin MB, Cohen M, Crawford D, Gospadarowicz M, Kaplan RS, Miller DS, Montironi R, Pajak TF, Pollack A, Srigley JR, Yarbro JW (2000) Prognostic factors in prostate cancer. College of American Pathologists Consensus Statement 1999. Arch Pathol Lab Med 124:995–1000PubMedGoogle Scholar
  9. 9.
    Weidner N, Carroll PR, Flax J, Blumenfeld W, Folkman J (1993) Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am J Pathol 143:401–409PubMedGoogle Scholar
  10. 10.
    Mehta R, Kyshtoobayeva A, Kurosaki T, Small EJ, Kim H, Stroup R, McLaren CE, Li KT, Fruehauf JP (2001) Independent association of angiogenesis index with outcome in prostate cancer. Clin Cancer Res 7:81–88PubMedGoogle Scholar
  11. 11.
    Taille A de la, Katz AE, Bagiella E, Buttyan R, Sharir S, Olsson CA, Burchardt T, Ennis RD, Rubin MA (2000) Microvessel density as a predictor of PSA recurrence after radical prostatectomy: a comparison of CD34 and CD31. Am J Clin Pathol 113:555–562CrossRefPubMedGoogle Scholar
  12. 12.
    Bettencourt MC, Bauer JJ, Sesterhenn IA, Connelly RR, Moul JW (1998) CD34 immunohistochemical assessment of angiogenesis as a prognostic marker for prostate cancer recurrence after radical prostatectomy. J Urol 160:459–465PubMedGoogle Scholar
  13. 13.
    White S, Hricak H, Forstner R, Kurhanewicz J, Vigneron DB, Zaloudek CJ, Weiss JM, Narayan P, Carroll PR (1995) Prostate cancer: effect of postbiopsy hemorrhage on interpretation of MR images. Radiology 195:385–390PubMedGoogle Scholar
  14. 14.
    True LD (1994) Surgical pathology examination of the prostate gland: practice survey by American society of clinical pathologists. Am J Clin Pathol 102:572–579PubMedGoogle Scholar
  15. 15.
    Gleason DF, Mellinger GT (1974) Prediction of prognosis for prostatic adenocarcinoma by combined histological grading and clinical staging. J Urol 111:58–64PubMedGoogle Scholar
  16. 16.
    Grobholz R, Bohrer MH, Siegsmund M, Jünemann K-P, Bleyl U, Woenckhaus M (2000) Correlation between neovascularisation and neuroendocrine differentiation in prostatic carcinoma. Pathol Res Pract 196:277–284PubMedGoogle Scholar
  17. 17.
    Jaeger TM, Weidner N, Chew K, Moore DH, Kerschmann RL, Waldman FM, Carroll PR (1995) Tumor angiogenesis correlates with lymph node metastases in invasive bladder cancer. J Urol 154:69–71PubMedGoogle Scholar
  18. 18.
    Brix G, Semmler W, Port R, Schad LR, Layer G, Lorenz WJ (1991) Pharmacokinetic parameters in CNS Gd-DTPA-enhanced MR imaging. J Comput Assist Tomogr 15:621–628PubMedGoogle Scholar
  19. 19.
    Port RE, Knopp MV, Hoffmann U, Milker-Zabel S, Brix G (1999) Multicompartment analysis of gadolinium chelate kinetics: blood-tissue exchange in mammary tumors as monitored by dynamic MR imaging. J Magn Reson Imaging 10:233–241CrossRefPubMedGoogle Scholar
  20. 20.
    Hoffmann U, Brix G, Knopp MV, Hess T, Lorenz WJ (1995) Pharmacokinetic mapping of the breast: a new method for dynamic MR mammography. Magn Reson Med 33:506–514PubMedGoogle Scholar
  21. 21.
    Toi M, Kashitani J, Tominaga T (1993) Tumor angiogenesis is an independent prognostic indicator in primary breast carcinoma. Int J Cancer 55:371–374PubMedGoogle Scholar
  22. 22.
    Schlenger K, Hockel M, Mitze M, Schaffer U, Weikel W, Knapstein PG, Lambert A (1995) Tumor vascularity: a novel prognostic factor in advanced cervical carcinoma. Gynecol Oncol 57–66Google Scholar
  23. 23.
    Silberman MA, Partin AW, Veltri RW, Epstein JI (1997) Tumor angiogenesis correlates with progression after radical prostatectomy but not with pathologic stage in Gleason sum 5 to 7 adenocarcinoma of the prostate. Cancer 79:772–779CrossRefPubMedGoogle Scholar
  24. 24.
    Borre M, Offersen BV, Nerstrom B, Overgaard J (1998) Microvessel density predicts survival in prostate cancer patients subjected to watchful waiting. Br J Cancer 78:940–944PubMedGoogle Scholar
  25. 25.
    Borre M, Nerstrom B, Overgaard J (2000) Association between immunohistochemical expression of vascular endothelial growth factor (VEGF), VEGF-expressing neuroendocrine-differentiated tumor cells, and outcome in prostate cancer patients subjected to watchful waiting. Clin Cancer Res 1882–1890Google Scholar
  26. 26.
    Rubin MA, Buyyounouski M, Bagiella E, Sharir S, Neugut A, Benson M, Taille A de la, Katz AE, Olsson CA, Ennis RD (1999) Microvessel density in prostate cancer: lack of correlation with tumor grade, pathologic stage, and clinical outcome. Urology 53:542–547CrossRefPubMedGoogle Scholar
  27. 27.
    Gettman MT, Bergstralh EJ, Blute M, Zincke H, Bostwick DG (1998) Prediction of patient outcome in pathologic stage T2 adenocarcinoma of the prostate: lack of significance for microvessel density analysis. Urology 51:79–85CrossRefPubMedGoogle Scholar
  28. 28.
    Brown G, Macvicar DA, Ayton V, Husband JE (1999) The role of intravenous contrast enhancement in magnetic resonance imaging of prostatic carcinoma. Clin Radiol 50:601–606Google Scholar
  29. 29.
    Jager GJ, Ruijter ET, van de Kaa CA, Rosette JJ de la, Oosterhof GO, Thornbury JR, Ruijs SH, Barentsz JO (1997) Dynamic TurboFLASH subtraction technique for contrast-enhanced MR imaging of the prostate: correlation with histopathologic results. Radiology 203:645–652PubMedGoogle Scholar
  30. 30.
    Barentsz JO, Engelbrecht M, Jager GJ, Witjes JA, Rosette J de la, van der Sanden BP, Huisman HJ, Heerschap A (1999) Fast dynamic gadolinium-enhanced MR imaging of urinary bladder and prostate cancer. J Magn Reson Imaging 10:295–304PubMedGoogle Scholar
  31. 31.
    Tanaka N, Samma S, Joko M, Akiyama T, Takewa M, Kitano S, Okajima E (1999) Diagnostic usefulness of endorectal magnetic resonance imaging with dynamic contrast-enhancement in patients with localized prostate cancer: mapping studies with biopsy specimens. Int J Urol 6:593–599CrossRefPubMedGoogle Scholar
  32. 32.
    Padhani AR, Gapinski CJ, Macvicar DA, Parker GJ, Suckling J, Revell PB, Leach MO, Dearnaley DP, Husband JE (2000) Dynamic contrast-enhanced MRI of prostate cancer: correlation with morphology and tumour stage, histological grade and PSA. Clin Radiol 55:99–109PubMedGoogle Scholar
  33. 33.
    Ogura K, Maekawa S, Okubo K, Aoki Y, Okada T, Oda K, Watanabe Y, Tsukayama C, Arai Y (2001) Dynamic endorectal magnetic resonance imaging for local staging and detection of neurovascular bundle involvement of prostate cancer: correlation with histopathologic results. Urology 57:721–726CrossRefPubMedGoogle Scholar
  34. 34.
    Taylor JS, Tofts PS, Port R, Evelhoch JL, Knopp MV, Reddick WE, Runge VM, Mayr N (1999) MR imaging of tumor microcirculation: promise for the new millenium. J Magn Reson Imaging 10:903–907CrossRefPubMedGoogle Scholar
  35. 35.
    Rouvière O, Raudrant A, Ecochard R, Colin-Pangaud C, Pasquiou C, Bouvier R, Maréchal JM, Lyonnet D (2003) Characterization of time-enhancement curves of benign and malignant prostate tissue at dynamic MR imaging. Eur Radiol 13:931–942PubMedGoogle Scholar
  36. 36.
    Preziosi P, Orlachio A, Giambattista GD, Renzi PD, Bortolotti L, Fabiano A, Cruciani E, Pasqualetti P (2003) Enhancement patterns of prostate cancer in dynamic MRI. Eur Radiol 13:925–930PubMedGoogle Scholar
  37. 37.
    Turnbull LW, Buckley DL, Turnbull LS, Liney GP, Knowles AJ (1999) Differentiation of prostatic carcinoma and benign prostatic hyperplasia: correlation between dynamic Gd-DTPA-enhanced MR imaging and histopathology. J Magn Reson Imaging 9:311–316PubMedGoogle Scholar
  38. 38.
    Huisman HJ, Engelbrecht MR, Barentsz JO (2001) Accurate estimation of pharmacokinetic contrast-enhanced dynamic MRI parameters of the prostate. J Magn Reson Imaging 13:607–614CrossRefPubMedGoogle Scholar
  39. 39.
    Gossmann A, Okuhata Y, Shames DM, Helbich TH, Roberts TP, Wendland MF, Huber S, Brasch RC (1999) Prostate cancer tumor grade differentiation with dynamic contrast-enhanced MR imaging in the rat: comparison of macromolecular and small-molecular contrast media—preliminary experience. Radiology 213:265–272PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Heinz-Peter Schlemmer
    • 1
    • 5
    Email author
  • Jonas Merkle
    • 1
  • Rainer Grobholz
    • 2
  • Tim Jaeger
    • 3
  • Maurice Stephan Michel
    • 3
  • Axel Werner
    • 4
  • Jan Rabe
    • 4
  • Gerhard van Kaick
    • 1
  1. 1.Department of Oncological Diagnostics and Therapy, German Cancer Research Center, University Hospital MannheimHeidelbergGermany
  2. 2.Department of Pathology, University Hospital MannheimRuprecht Karls UniversityHeidelbergGermany
  3. 3.Department of Urology, University Hospital MannheimRuprecht Karls UniversityHeidelbergGermany
  4. 4.Department of Diagnostic Radiology, University Hospital MannheimRuprecht Karls UniversityHeidelbergGermany
  5. 5.Department of Diagnostic RadiologyUniversity Hospital TuebingenTuebingenGermany

Personalised recommendations