Abstract
Haemolymph samples were withdrawn from routinely active male intermoult Glyptonotus held at 0 ± 0.5°C, and analysed for blood-gas and acid-base variables. In both the arterialised (a) and venous (v) haemolymph, over 50% of the oxygen was transported as dissolved oxygen at PaO2 and PvO2 levels of 12.0 ± 1.15 and 7.70 ± 1.89 kPa, respectively. The maximum oxygen-carrying capacity of the haemocyanin (CmaxHcO2) was relatively low at 0.19 ± 0.05 mmol l−1, accompanied by relatively low protein and [Cu2+] levels indicating low circulating haemocyanin concentrations. Arterialised haemolymph had a mean pH of 7.88 ± 0.02(6) at a PCO2 of 0.12 ± 0.01(6) kPa and a bicarbonate level of 12.95 ± 0.80(6) mequiv l−1 with small differences in PCO2 and pH between arterial and venous haemolymph. The non-bicarbonate buffering capacity of Glyptonotus haemolymph was low at −2.0 mequiv l−1 HCO3 − pH unit−1. Haemolymph [l-lactate] and [d-glucose] levels were similar at < 1 mmol l−1 in animals held in the laboratory and those sampled in Antarctica. The blood-gas and acid-base status of Glyptonotus haemolymph may be a reflection of the low and stable temperatures experienced by this Antarctic crustacean.
Similar content being viewed by others
Author information
Authors and Affiliations
Additional information
Received: 14 August 1996 / Accepted: 3 November 1996
Rights and permissions
About this article
Cite this article
Whiteley, N., Taylor, E., Clarke, A. et al. Haemolymph oxygen transport and acid-base status in Glyptonotus antarcticus Eights. Polar Biol 18, 10–15 (1997). https://doi.org/10.1007/s003000050153
Issue Date:
DOI: https://doi.org/10.1007/s003000050153

