Skip to main content

Advertisement

Log in

Patterns of surface temperature and link to environmental variables in Weddell seals from the western Antarctic Peninsula

  • Research
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Pinnipeds face challenges in maintaining a stable body temperature in two mediums with distinct characteristics: the terrestrial and aquatic environments. Water extracts heat faster than air, so pinnipeds possess adaptations to maintain thermal balance in both environments. When exiting the water, some phocid species develop thermal windows, areas on the body surface displaying higher temperatures than the rest of the body. This mechanism is thought to help in dissipating excess heat from the body. We assessed whether Weddell seals (Leptonychotes weddellii), the southernmost distributed marine mammal, had the capacity to develop thermal windows and investigated the relationship between thermal surface patterns and environmental factors. We obtained infrared images of 45 hauled-out Weddell seals within the western Antarctic Peninsula, during the summer season. Weddell seals presented uniform surface temperatures across body regions (head, torso, front flipper, and hind flipper) suggesting that all body parts have an equal role in keeping thermal balance. The main driver of surface temperature was wind speed, with higher wind speeds resulting in lower surface temperatures. Wind facilitates convective heat transfer to the environment, decreasing the insulating capability of fur. Thus, wind was a more important driver than air temperature and relative humidity. Thermal windows were identified in 49% of the Weddell seals studied and occurred more frequently at higher air temperatures. The development of thermal windows could solve the problem of overheating when seals haul out on land, which is particularly relevant under the warming scenario within the western Antarctic Peninsula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alengaram UJ, Al Muhit BA, Bin Jumaat MZ, Jing MLY (2013) A comparison of the thermal conductivity of oil palm shell foamed concrete with conventional materials. Mater Des 51:522–529

    Article  Google Scholar 

  • Ash CJ, Gotti E, Haik CH (1987) Thermography of the curved living skin surface. Mo Med 84:702

    CAS  PubMed  Google Scholar 

  • Boyles JG, Seebacher F, Smit B, McKechnie AE (2011) Adaptive thermoregulation in endotherms may alter responses to climate change. Integr Comp Biol 51:676–690

    Article  PubMed  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer-Verlag, New York

    Google Scholar 

  • Chappel M (1980) Insularion, radiation, and convection in small arctic mammals. J Mammal 61:268–277

    Article  Google Scholar 

  • Clarke A, Murphy EJ, Meredith MP et al (2007) Climate change and the marine ecosystem of the western Antarctic Peninsula. Philosophical Transactions of the Royal Society B, Biological Sciences

    Book  Google Scholar 

  • Erdsack N, Hanke FD, Dehnhardt G, Hanke W (2012) Control and amount of heat dissipation through thermal windows in harbor seals (Phoca vitulina). J Therm Biol. https://doi.org/10.1016/j.jtherbio.2012.06.002

    Article  Google Scholar 

  • Favilla AB, Costa DP (2020) Thermoregulatory strategies of diving air-breathing marine vertebrates: a review. Front Ecol Evol 8:555509

    Article  Google Scholar 

  • Favilla AB, Horning M, Costa DP (2022) Advances in thermal physiology of diving marine mammals: the dual role of peripheral perfusion. Temperature 9:46–66

    Article  Google Scholar 

  • Feltz ET, Fay FH (1966) Thermal requirements in vitro of epidermal cells from seals. Cryobiology 3:261–264

    Article  CAS  PubMed  Google Scholar 

  • Frappell P, Cummings K (2008) Homeotherms. Encyclopedia of ecology. Sven Eric Jorgensen, Brian Fath

  • Gentry RL (1973) Thermoregulatory behavior of eared seals. Behaviour 46:73–93

    Article  CAS  PubMed  Google Scholar 

  • Gerken M (2010) Relationships between integumental characteristics and thermoregulation in South American camelids. Animal 4:1451–1459

    Article  CAS  PubMed  Google Scholar 

  • Guerrero AI, Rogers TL, Sepúlveda M (2021) Conditions influencing the appearance of thermal windows and the distribution of surface temperature in hauled-out southern elephant seals. Conserv Physiol 9:coaa141

    Article  PubMed  PubMed Central  Google Scholar 

  • Hart JS, Irving L, Mackenzie B (1959) The energetics of harbor seals in air and in water with special consideration of seasonal changes. Can J Zool 37:447–457. https://doi.org/10.1139/z59-052

    Article  Google Scholar 

  • Hindle AG, Horning M, Mellish J-AE (2015) Estimating total body heat dissipation in air and water from skin surface heat flux telemetry in Weddell seals. Animal Biotelemetry 3:1–11

    Article  Google Scholar 

  • Hoffman TCM, Walsberg GE, DeNardo DF (2007) Cloacal evaporation: an important and previously undescribed mechanism for avian thermoregulation. J Exp Biol 210:741–749

    Article  PubMed  Google Scholar 

  • Ht H (1956) Infrared emissivities of some arctic fauna. J Mammal 37:375–378

    Article  Google Scholar 

  • Hückstädt LA (2018) Weddell seal: Leptonychotes weddellii. Encyclopedia of marine mammals. Elsevier, Amsterdam, pp 1048–1051

    Chapter  Google Scholar 

  • Irving L, Hart JS (1957) The metabolism and insulation of seals as bare-skinned mammals in cold water. Can J Zool 35:497–511. https://doi.org/10.1139/z57-041

    Article  CAS  Google Scholar 

  • Johnson JB, Omland KS (2004) Model selection in ecology and evolution Johnson & Omland 2004 TREE.pdf. Trends Ecol Evol 19:101–108

    Article  PubMed  Google Scholar 

  • Krmpotic CM, Loza CM, Negrete J et al (2018) Integument in Antarctic seals: a comparative study and its relation to extreme environments. Acta Zoologica. https://doi.org/10.1111/azo.12212

    Article  Google Scholar 

  • Kuhn RA, Meyer W (2009) Infrared thermography of the body surface in the Eurasian otter Lutra lutra and the giant otter Pteronura brasiliensis. Aquat Biol 6:143–152

    Article  Google Scholar 

  • Kvadsheim PH, Aarseth JJ (2002) Thermal function of phocid seal fur. Mar Mamm Sci 18:952–962

    Article  Google Scholar 

  • LaRue M, Salas L, Nur N et al (2021) Insights from the first global population estimate of Weddell seals in Antarctica. Sci Adv 7:eabh3674

    Article  PubMed  PubMed Central  Google Scholar 

  • Lavers C, Franks K, Floyd M, Plowman A (2005) Application of remote thermal imaging and night vision technology to improve endangered wildlife resource management with minimal animal distress and hazard to humans. J Phys. https://doi.org/10.1088/1742-6596/15/1/035

    Article  Google Scholar 

  • Ling JK (1970) Pelage and molting in wild mammals with special reference to aquatic forms. Q Rev Biol 45:16–54

    Article  CAS  PubMed  Google Scholar 

  • Liwanag HEM, Berta A, Costa DP et al (2012) Morphological and thermal properties of mammalian insulation: the evolutionary transition to blubber in pinnipeds. Biol J Lin Soc 107:774–787

    Article  Google Scholar 

  • Mauck B, Bilgmann K, Jones DD et al (2003) Thermal windows on the trunk of hauled-out seals: hot spots for thermoregulatory evaporation? J Exp Biol 206:1727–1738. https://doi.org/10.1242/JEB.00348

    Article  PubMed  Google Scholar 

  • McCafferty DJ (2007) The value of infrared thermography for research on mammals: previous applications and future directions. Mamm Rev 37:207–223. https://doi.org/10.1111/j.1365-2907.2007.00111.x

    Article  Google Scholar 

  • McGinnis SM, Whittow GC, Ohata CA, Huber H (1972) Body heat dissipation and conservation in two species of dolphins. Comp Biochem Physiol A Physiol 43:417–423

    Article  CAS  Google Scholar 

  • McLeman R, Smit B (2006) Migration as an adaptation to climate change. Clim Change 76:31–53

    Article  Google Scholar 

  • Meagher EM, McLellan WA, Westgate AJ et al (2002) The relationship between heat flow and vasculature in the dorsal fin of wild bottlenose dolphins Tursiops truncatus. J Exp Biol 205:3475–3486

    Article  PubMed  Google Scholar 

  • Mellish JA, Hindle A, Skinner J, Horning M (2015) Heat loss in air of an Antarctic marine mammal, the Weddell seal. J Comp Physiol B. https://doi.org/10.1007/s00360-014-0868-2

    Article  PubMed  Google Scholar 

  • Molyneux GS, Bryden MM (1978) Arteriovenous anastomoses in the skin of seals. I. The Weddell seal Leptonychotes weddelli and the elephant seal Mirounga leonina (Pinnipedia: Phocidae). Anat Rec 191:239–251

    Article  CAS  PubMed  Google Scholar 

  • Montes-Hugo M, Doney SC, Ducklow HW et al (2009) Recent changes in phytoplankton communities associated with rapid regional climate change along the western Antarctic Peninsula. Science. https://doi.org/10.1126/science.1164533

    Article  PubMed  Google Scholar 

  • Nienaber J, Thomton J, Horning M et al (2010) Surface temperature patterns in seals and sea lions: a validation of temporal and spatial consistency. J Therm Biol 35:435–440

    Article  Google Scholar 

  • Norris AL, Houser DS, Crocker DE (2010) Environment and activity affect skin temperature in breeding adult male elephant seals (Mirounga angustirostris). J Exp Biol. https://doi.org/10.1242/jeb.042135

    Article  PubMed  Google Scholar 

  • Øritsland NA (1968) Variations in the body surface temperature of the harp seal. Acta Physiol Scand. https://doi.org/10.1111/j.1748-1716.1968.tb04144.x

    Article  PubMed  Google Scholar 

  • Orr A, Cresswell D, Marshall GJ et al (2004) A ‘low-level’ explanation for the recent large warming trend over the western Antarctic Peninsula involving blocked winds and changes in zonal circulation. Geophys Res Lett. https://doi.org/10.1029/2003GL019160

    Article  Google Scholar 

  • Pearson LE (2015) Blubber and Beyond: the role of lipids in thermoregulation and energy reserves of phocid seals. University of Alaska Fairbanks

  • R Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing 3

  • Reidenberg JS (2007) Anatomical adaptations of aquatic mammals. Anatomical Rec 290:507–513

    Article  Google Scholar 

  • Riedman M (1990) The Pinnipeds: seals, sea lions, and Walruses. University of California Press, Berkeley

    Book  Google Scholar 

  • Rodríguez-Prieto V, Rubio-García A, Melero M et al (2013) Identification of the pattern of appearance and development of thermal windows in the skin of juvenile Pacific walruses (Odobenus rosmarus divergens) in a controlled environment. Mar Mamm Sci. https://doi.org/10.1111/j.1748-7692.2011.00533.x

    Article  Google Scholar 

  • Ryg M, Lydersen C, Knutsen LØ et al (1993) Scaling of insulation in seals and whales. J Zool 230:193–206

    Article  Google Scholar 

  • Saravia C, Cruz G (2003) Influencia del ambiente atmosférico en la adaptación y producción animal. Universidad de la Republica, Montevideo

    Google Scholar 

  • Scholander PF, Walters V, Hock R, Irving L (1950) Body insulation of some arctic and tropical mammals and birds. Biol Bull 99:225–236

    Article  CAS  PubMed  Google Scholar 

  • Siniff DB (1991) An overview of the ecology of Antarctic seals. Integr Comp Biol. https://doi.org/10.1093/icb/31.1.143

    Article  Google Scholar 

  • Souza-Junior JBF, de Queiroz JPAF (2022) Multiple pathways to dissipate body heat excess and the infrared thermography effectiveness. J Animal Behav Biometeorol 10:2222

    Article  Google Scholar 

  • Stirling I (1969) Distribution and abundance of the Weddell seal in the western Ross Sea, Antarctica. N Z J Mar Freshwater Res 3:191–200

    Article  Google Scholar 

  • Tarasoff FJ, Fisher HD (1970) Anatomy of the hind flippers of two species of seals with reference to thermoregulation. Can J Zool 48:821–829

    Article  Google Scholar 

  • Tattersall GJ, Cadena V (2010) Insights into animal temperature adaptations revealed through thermal imaging. Imaging Sci Js 58:261–268

    Article  Google Scholar 

  • Tirira D (2015) Notas sobre la historia natural y estado de conservación de Leptonychotes weddellii (Carnivora: Phocidae) en los alrededores de la Estación Científica Pedro Vicente Maldonado, Antártida. Master, Pontifica Universidad Católica del Ecuador

  • Turner J, Lu H, White I et al (2016) Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature 535:411–415

    Article  CAS  PubMed  Google Scholar 

  • Walcott SM, Kirkham AL, Burns JM (2020) Thermoregulatory costs in molting Antarctic Weddell seals: impacts of physiological and environmental conditions. Conserv Physiol. https://doi.org/10.1093/conphys/coaa022

    Article  PubMed  PubMed Central  Google Scholar 

  • Weissenböck NM, Weiss CM, Schwammer HM, Kratochvil H (2010) Thermal windows on the body surface of African elephants (Loxodonta africana) studied by infrared thermography. J Therm Biol 35:182–188

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the Chilean Antarctic Institute (INACH) for their invaluable logistical support during the ECA-56 campaign. Additionally, we extend our gratitude to the Armada de Chile at Base Prat, and in particular, we would like to thank the dedicated members of the “Patrulla Zero” for their assistance during the seal search operations.

Author information

Authors and Affiliations

Authors

Contributions

AIG and MS conceived the study. NV and AIG conducted fieldwork. NV analysed the data and wrote the main manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Alicia I. Guerrero.

Ethics declarations

Competing interests

Authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vargas, N., Sepúlveda, M. & Guerrero, A.I. Patterns of surface temperature and link to environmental variables in Weddell seals from the western Antarctic Peninsula. Polar Biol (2024). https://doi.org/10.1007/s00300-024-03258-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00300-024-03258-5

Keywords

Navigation