Skip to main content

Advertisement

Log in

Diversity of pollen grains transported from South America to the Antarctic Peninsula through atmospheric dispersal

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

The geographical isolation of Antarctica and the low temperatures resulting from the Antarctic albedo and the Circumpolar Current are key factors determining the influence of the continent on global climate regulation and ecosystem conservation. This study aimed to identify the feasibility of using pollen grains as biomarkers of atmospheric transport between South America and Antarctica. For this, snow samples were collected at three different sites on Joinville Island, in 2005. Samples were collected by the Laboratory of Radioecology and Global Change of the Rio de Janeiro State University and analyzed palynologically at the Álvaro Xavier Moreira Laboratory of Palynology of the National Museum, Federal University of Rio de Janeiro, Brazil. Palynological analysis revealed the presence of spores from Blechnaceae, pollen grains (Cyperaceae, Apocynaceae, Asteraceae, Moraceae, Leguminosae, Rubiaceae Oreopolus glacialis (Poepp.) Ricardi, Passifloraceae, Ruscaceae, Urticaceae, Winteraceae and non-pollen palynomorphs. It was found that the recorded taxa occur in South America. The Hybrid Single-Particle Lagrangian Integrated Trajectory model was applied to investigate which air masses potentially pass through the sampling sites on Joinville Island and assess associations between the biogeography of recorded species and air mass trajectories. Biogeographical analysis indicated that the Andes serve as a heat source for pollen transport, confirming the feasibility of using pollen grains as biomarkers of atmospheric transport. The results obtained will be of great importance for researchers interested in palynology, aeropalynology, and biomarkers of atmospheric transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agostini KM, Rodrigues LAC, Santos AA, Mendonça CBF, Gonçalves-Esteves V (2017) Analysis of exotic pollen grains and spores from thawing lakes of King George Island, Antarctic Peninsula. Rev Palaeobot Palynol 245:1–9

    Article  Google Scholar 

  • Albrecht T, Winkelmann R, Levermann A (2020) Glacial-cycle simulations of the Antarctic ice sheet with the parallel ice sheet model (PISM) – Part 1: Boundary conditions and climatic forcing. Cryosphere 14:599–632

    Article  Google Scholar 

  • Badano EI, Molina-Montenegro MA, Quiroz C, Cavieres LA (2002) Efectos de la planta en cojín Oreopolus glacialis (Rubiaceae) sobre la riqueza y diversidad de especies en una comunidad alto-andina de Chile Central. Rev Chil de Hist Nat 75:757–765

    Article  Google Scholar 

  • Ballero M, Maxia A (2003) Pollen spectrum variations in the atmosphere of Cagliari, Italy. Aerobiologia 19:251–259

    Article  Google Scholar 

  • Barnes DKA, Hodgson DA, Convey P, Allen CS, Clarke A (2006) Incursion and excursion of Antarctic biota: past, present and future. Glob Ecol Biogeogr 15:121–142

    Article  Google Scholar 

  • Barroso GM et al (1991) Sistemática das Angiospermas do Brasil. Imprensa Universitária, Viçosa

    Google Scholar 

  • Barrow CJ (1983) Palynological studies in South Georgia: III. Three profiles from near King Edward Cove, Cumberland East Bay. Sci Rep Br Antarct Surv 58:43–60

    Google Scholar 

  • Beck CD, Ahlert S, Simões JC (2004) Sensoriamento remoto da Ilha Joinville. In: V Simpósio Argentino y I LatinoAmericano sobre Investigaciones Antárticas. Buenos Aires. Actas del V Simpósio Argentino y I Latino Americano sobre Investigaciones Antárticas v 1: 1–4

  • Bitencourt DP, Fuentes MV, Cardoso CS (2013) Climatologia de ciclones explosivos para a área ciclogenética da América do Sul. Rev Bras Meteorol 28:43–56

    Article  Google Scholar 

  • Bjerknes J (1919) On the structure of moving cyclones. Mon Weather Rev 47:95–99

    Article  Google Scholar 

  • Bose MN, Taylor EL, Taylor TN (1990) Gondwana Floras of India and Antarctica. A survey and appraisal. In: Taylor TN, Taylor EL (eds) Antartic paleobiology. Springer, New York

    Google Scholar 

  • Bourgeois JC, Gajewski K, Koerner RM (2001) Spatial patterns of pollen deposition in arctic snow. J Geophys Res Atmos 106:5255–5565

    Article  Google Scholar 

  • Braun C, Mustafa O, Nordt A, Pfeiffer S, Hans-Ulrich P (2012) Environmental monitoring and management proposals for the Fildes Region, King George Island, Antarctica. Polar Res 31:5–18

    Article  Google Scholar 

  • Bremer K (1994) Asteraceae: Cladistics and classification. Timber Press, Portland

    Google Scholar 

  • Bruhl JJ (1995) Sedge genera of the World: relationships and a new classification of the Cyperaceae. Aust Syst Bot 8:125–305

    Article  Google Scholar 

  • Buril MT, Santos FAR, Alves M (2010) Diversidade polínica das Mimosoideae (Leguminosae) ocorrentes em uma área de caatinga, Pernambuco, Brasil. Acta Bot Bras 24:53–64

    Article  Google Scholar 

  • Câmara PEAS, Lopes FAC, Bones FLV, Rodrigues LAC, Carvalho-Silva M, Stech M, Convey P, Rosa LH (2023) Investigating aerial diversity of non-fungal eukaryotes across a 40º latitudinal transect using DNA metabarcoding. Austral Ecol 00:1–17. https://doi.org/10.1111/aec.13332

    Article  Google Scholar 

  • Cervi AC (1997) Passifloraceae do Brasil. Estudo do gênero Passiflora L., subgênero Passiflora. Fontqueria 45:1–92

    Google Scholar 

  • Coelho CB, Esteves LM (2008) Morfologia de esporos de pteridófitas do Parque Estadual das Fontes do Ipiranga (São Paulo, Brasil) Família: 2-Blechnaceae. Hoehnea 35:387–393

    Article  Google Scholar 

  • Cooper A, Paul R (2007) Review of remote sensing of snow and ice by W.G. Rees, Boca Raton, CRC Press, 2005. Polar Rec 43:81–82

    Article  Google Scholar 

  • Deginani NB (2001) Las especies argentinas del género Passiflora (Passifloraceae). Darwiniana 39:43–129

    Google Scholar 

  • Dutra VF, Garcia FCPL, Cavalcante H (2008) Caesalpinioideae (Leguminosae) nos Campos Rupestres do Parque Estadual do Itacolomi, MG, Brasil. Acta Bot Bras 22:547–558

    Article  Google Scholar 

  • Dyakowska J (1948) The pollen rain on the sea and on the coast of Greenland. - Bull. 1st. Acad. Cracovie (Acad Pol Sci) Scr B Sci Nat 1:1–25

    Google Scholar 

  • Erdtman G (1938) Pollen grains recovered from the atmosphere over the Atlantic. Acta Horti Gothob 12:185–196

    Google Scholar 

  • Erdtman G (1952) Pollen morphology and plant taxonomy –Angiosperms. Almqvisit & Wiksel, Stockholm

    Google Scholar 

  • Faria RAPG, Coelho MFB, Albuquerque MCF, Azevedo RAB (2015) Fenologia de Brosimum gaudichaudii trécul. (Moraceae) no cerrado de Mato Grosso. Ciência Florestal 25:67–75

    Article  Google Scholar 

  • Feuillet C, MacDougal J (2004) A new infrageneric classification of Passiflora L. (Passifloraceae). Passiflora 13:34–38

    Google Scholar 

  • Fox AJ, Cooper APR (1994) Measured properties of the Antarctic ice sheet derived from the SCAR Antarctic digital database. Polar Res 30:201–206

    Article  Google Scholar 

  • Freitas J, Lírio EJ, Alves-Araújo A (2022) Flora of Espírito Santo: Winteraceae. Rodriguésia 73:1–6

    Article  Google Scholar 

  • Goetghebeur P (1998) Cyperaceae. In: Kubitzki K (ed) The families and genera of vascular plants. Monocotyledons, vol 4. Springer, Hamburg

    Google Scholar 

  • Halbritter H (2005) Amorphophallus asterostigmatus. In: PalDat – A palynological database. http://paldat.org/pub/Amorphophallus_asterostigmatus/100496. Acessed 29 March 2023

  • Harmata K, Olech M (1991) Transect for aerobiological studies from Antarctica to Poland. Grana 30:458–463

    Article  Google Scholar 

  • Hertzog A, Pellegrini MOO, Santos-Silva F (2016) Winteraceae do Rio Grande do Sul, Brasil. Rodriguésia 67:251–260

    Article  Google Scholar 

  • Heusser CJ (1971) Pollen and spores of Chile. University of Arizona Press, Tucson

    Book  Google Scholar 

  • Hind DJN (1993) Notes on the Compositae of Bahia, Brazil: I. Kew Bull 48:245–277

    Article  Google Scholar 

  • Hoskins BJ, Karoly DJ (1981) The steady linear response of a spherical atmosphere to thermal and orographic forcing. J Atmos Sci 38:1179–1196

    Article  Google Scholar 

  • Jackson ST, Lyford ME (1999) Pollen dispersal models in Quaternary plant ecology: assumptions, parameters, and prescriptions. Bot Rev 65:39–75

    Article  Google Scholar 

  • Janzen DH (1971) Euglossine bees as long-distance pollinators of tropical plants. Science 171:203–205

    Article  CAS  PubMed  Google Scholar 

  • Jones RS, Johnson JS, Lin Y (2022) Stability of the Antarctic Ice Sheet during the pre-industrial Holocene. Nat Rev Earth Environ 3:500–515

    Article  Google Scholar 

  • Jones TR, Cuffey KM, Roberts WHG (2023) Seasonal temperatures in West Antarctica during the Holocene. Nature 613:292–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Judd WS, Campbell C, Kellogg EA, Stevens PF, Donoghue MJ (2009) Sistemática Vegetal: Um enfoque filogenético, 3rd edn. Artmed, Porto Alegre

    Google Scholar 

  • Kappen L, Straka H (1988) Pollen and spores transport into the Antarctic. Polar Biol 8:173–180

    Article  Google Scholar 

  • Leal MA et al (2008) Atmospheric impacts due to anthropogenic activities in remote areas: the case study of admiralty Bay/King George Island/Antarctic peninsula. Water Air Soil Poll 188:67–80

    Article  CAS  Google Scholar 

  • Lewis GP, Schrire B, Mackinder B, Lock M (2005) Legumes of the world. Royal Botanical Garden, Kew, Richmond

    Google Scholar 

  • Lewis-Smith R (2013) A fern cultured from Antarctic glacier detritus. Antarct Sci 26:341–344

    Article  Google Scholar 

  • LPWG (2017) New subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny. Taxon 66:44–77

    Article  Google Scholar 

  • Martins EGA, Pirani JR (2010) Flora da Serra do Cipó, Minas Gerais: Moraceae. Boletim Bot 28:69–86

    Article  Google Scholar 

  • Moreira FF, Mendonça CBF, Pereira JF, Gonçalves-Esteves V (2004) Palinotaxonomia de espécies de Apocynaceae ocorrentes na Restinga de Carapebus, Carapebus, RJ, Brasil. Acta Bot Bras 18:711–721

    Article  Google Scholar 

  • Muñoz J, Felicísimo AM, Cabezas F, Burgaz A, Martínez I (2004) Wind as a long-distance dispersal vehicle in the Southern Hemisphere. Science 304:1144–1147

    Article  PubMed  Google Scholar 

  • Pearson S (2012) The Newcastle pollen collection. Database on the Uofaz. Department of Geosciences. http://geo.arizona.edu/palynology/nsw/search.htm, version 3.01. Accessed 10 January 2018

  • Pereira APMF, Rodrigues LAC, Santos EA, Cardoso TAO, Cohen SC (2019) Gestão de eventos QBRN e a utilização do modelo Hysplit: uma revisão integrativa de literatura. Saúde Debate 43:925–938

    Article  Google Scholar 

  • Peter HU, Buesser C, Mustafa O, Pfeiffer S (2008) Risk assessment for the Fildes Peninsula and Ardley Island, and development of management plans for their designation as Specially Protected or Specially Managed Areas. Federal Environment Agency Dessau-Rosslau. http://www.umweltbundesamt.de/publikationen/risk-assessment-for-fildes-peninsula-ardley-island. Accessed 03 March 2022

  • Science Plants (2011) Pollen Image Library. SAPS http://saps.org.uk/library/541. Accessed 26 October 2022

  • Poelking EL, Schaefer CER, Fernandes Filho E, Andrade AM, Spielmann AA (2014) Soil–landform–plant communities relationships of a periglacial landscape at Potter Peninsula, Maritime Antarctica. Solid Earth Discuss 6:2261–2292

    Google Scholar 

  • Punt W, Blackmore S, Nilsson S, Thomas AL (2007) Glossary of pollen and spore terminology. Rev Palaeobot Palynol 43:1–81

    Article  Google Scholar 

  • Rodrigues LAC (2016) Palinologia Antártica: Aplicação do grão de pólen como biotraçador para identificação do transporte atmosférico entre a América do Sul e a Antártica. Dissertação. Museu Nacional da Universidade Federal do Rio de Janeiro

  • Rosa LH, Sousa JRP, Menezes GCA, Costa CL, Carvalho-Silva M, Convey P, Câmara PEAS (2020) Opportunistic fungi found in fairy rings are present on different moss species in the Antarctic Peninsula. Polar Biol 44:1–10

    Google Scholar 

  • Roubik DW, Moreno JE (2003) Pollen and spores of Barro Colorado Island. Missouri Botanical Garden, Panamá

    Google Scholar 

  • Rudolph ED (1970) Local dissemination of plant propagules in Antarctica. In: Holdgate MW (ed) Antarctic ecology. Academic Press, London, pp 812–817

    Google Scholar 

  • Sancho LG, Pintado A (2011) Ecología vegetal en la Antártida. Ecosistemas 20(1):42–53

    Google Scholar 

  • Silva DM, Sylvestre LS, Mendonça CBF, Gonçalves-Esteves V (2019) Spore diversity among species of Blechnaceae in the Atlantic Forest. Acta Bot Bras 33:412–424

    Article  Google Scholar 

  • Silva DM, Sylvestre LS, Mendonça CBF, Gonçalves-Esteves V (2021) Palynology of selected species of Blechnaceae (Polypodiopsida: Polypodiales). Palynology 45:507–520

    Article  Google Scholar 

  • Simões JC, Garcia CAE, Evangelista H, Campos LS, Mata MM, Bremer UF (2011) Antártica e as Mudanças Globais: um desafio para a humanidade. In: Goldemberg, J. (Org.). Série Sustentabilidade, São Paulo, v. 9. http://researchgate.net/publication/258564936. Accessed 23 October 2022

  • Souza VC, Lorenzi H (2005) Botânica Sistemática. Nova Odessa, São Paulo

    Google Scholar 

  • Souza-Souza RMB, Sousa GKR, Esteves RL, Mendonça CBF, Gonçalves-Esteves V (2022) Importance of palynology in the taxonomy of Piptolepis Sch.Bip. (Asteraceae: Lychnophorinae), a genus endemic to Brazil. An Acad Bras Cienc. https://doi.org/10.1590/0001-3765202220201244

    Article  PubMed  Google Scholar 

  • Spalding BBC, Lorscheitter ML (2009) Palinologia de sedimentos da turfeira do Banhado Amarelo, São Francisco de Paula, Rio Grande do Sul, Brasil. Fungos Criptógamas Hoehnea 36:219–232

    Article  Google Scholar 

  • Steig EJ, Neff PD (2018) The prescience of paleoclimatology and the future of the Antarctic ice sheet. Nat Commun 9:2730

    Article  PubMed  PubMed Central  Google Scholar 

  • Suganuma Y, Kaneda H, Mas e Braga M, et al (2022) Regional sea-level highstand triggered Holocene ice sheet thinning across coastal Dronning Maud Land, East Antarctica. Commun Earth Environ 3:273. https://doi.org/10.1038/s43247-022-00599-z

    Article  Google Scholar 

  • Szumińska D, Potapowicz J, Szopińska M, Czapiewski S, Falk U, Frankowski M, Polkowska Ż (2021) Sources and composition of chemical pollution in Maritime Antarctica (King George Island), part 2: Organic and inorganic chemicals in snow cover at the Warszawa Icefield. Sci Total Environ 20:796. https://doi.org/10.1016/j.scitotenv.2021.149054

    Article  CAS  Google Scholar 

  • Taylor TN, Taylor EL (1990) Antarctic paleobiology: its role in the reconstruction of Gondwana. Springer, New York

    Book  Google Scholar 

  • Tryon RM, Tryon AF (1982) Ferns and allied plants with special reference to tropical America. Springer, New York

    Book  Google Scholar 

  • Turner J, Lu H, White I et al (2016) Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature 535:411–415

    Article  CAS  PubMed  Google Scholar 

  • Verdi LG, Brighente IMC, Pizzolati MG (2005) Gênero Baccharis (Asteraceae): Aspectos químicos, econômicos e biológicos. Quím Nova 28:85–94

    Article  CAS  Google Scholar 

  • Vergamini S, Ramos AJK, Duso L, Sbersi F, Maffazzoli FT (2006) Identificação de tipos polínicos não registrados nos estudos aeropalinológicos do Brasil. Ciência Rural 36:1927–1930

    Article  Google Scholar 

  • Zuloaga FO, Morrone O, Belgrano MJ (2008) Catálogo de las plantas vasculares del Cono Sur (Argentina, Sur de Brasil, Chile, Paraguay y Uruguay). Monogr Syst Ann Mo Bot Gard 107:1–3348

    Google Scholar 

Download references

Acknowledgements

V. Gonçalves-Esteves and C. B. F. Mendonça are grateful to the Brazilian National Council for Scientific and Technological Development (CNPq) for the research grants and research development aid (2018 Universal Call, process no. 422903/2018-3) awarded to the first author. All authors extend their thanks to the Rio de Janeiro Research Foundation (FAPERJ) for funding provided through the Emergency Aid to the National Museum (process no. 444 200.090/2019). We also thank Noêmia R. Gonçalves, from the Laboratory of Cellular Ultrastructure, Institute of Biophysics, Federal University of Rio de Janeiro (UFRJ), for the technical support with SEM analysis. We thank the Rio de Janeiro State Research Support Foundation and the National Institute of Science and Technology of the Cryosphere for the financial support and the Laboratory of Radioecology and Global Change of the Rio de Janeiro State University for collecting the material and reviewing data from the Antarctic continent.

Author information

Authors and Affiliations

Authors

Contributions

Material preparation, data collection, and analysis were performed by LACR, MVVJL, KMA, and ASA. All authors commented on previous versions, read, and approved the final manuscript. All authors were responsible for the conception of the manuscript and contributed to its final writing.

Corresponding author

Correspondence to Cláudia Barbieri Ferreira Mendonça.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, L.A.C., Mendonça, C.B.F., Licínio, M.V.V.J. et al. Diversity of pollen grains transported from South America to the Antarctic Peninsula through atmospheric dispersal. Polar Biol 46, 773–782 (2023). https://doi.org/10.1007/s00300-023-03165-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-023-03165-1

Keywords

Navigation