Skip to main content
Log in

Cyanobacterial diversity of Svalbard Archipelago

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Arctic ecosystems contain a variety of habitats that are colonized by cyanobacteria. They are of fundamental ecological importance; they contribute to both carbon and nitrogen fixation as well as frequently acting as ecosystem engineers. The exploration of cyanobacteria in the Svalbard Archipelago began in the nineteenth century. A previously published list of cyanobacteria from the Svalbard Archipelago (Skulberg in: Elvebakk and Prestrud (eds) Terrestrial and limnic algae and cyanobacteria, Norsk Polarinstitutt, Skrifer, Oslo 1996) included 89 cyanobacterial species. Since then, several articles have been written and knowledge about the diversity of cyanobacteria has increased. This study summarizes the results of the inventory of Cyanobacterial species in the Svalbard Archipelago. The cyanobacterial flora of Svalbard was analyzed based on our data and literature records. Cyanobacterial samples were studied under a light microscope. Species were identified based on morphological characteristics only. As a result of this analysis, we compiled an annotated list of the cyanobacteria of Svalbard. A total of 292 species of cyanobacteria were recorded in the archipelago. 84 of these species are reported here for the first time. This makes Svalbard's flora the richest in cyanobacteria of any area in the Eurasian Arctic. Information on the distribution, description of habitats, and substrate preferences of the cyanobacteria was included for all taxa. The composition of the Cyanobacterial flora of Svalbard was compared with the flora of other Arctic and sub-Arctic regions, revealing that the flora of Svalbard exhibited typical Arctic features. For instance, the proportions of the main Cyanobacterial orders and families are the same in Svalbard and the rest of the Eurasian Arctic. The Cyanobacterial composition in the Arctic and sub-Arctic areas conforms to the general pattern of declining species diversity with increasing latitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aleksandrova VD (1980) The Arctic and Antarctic: their division into Geobotanical areas. Cambridge University Press, Cambridge

    Google Scholar 

  • Borge O (1911) Die Süsswasseralgenflora Spitzbergens. Skrifter udgivne af Videnskabsselskabet i Christiania. I, Mathematisknaturvidenskabelig klasse 11:1–38

  • Chao A (1984) Non-parametric estimation of the number of classes in a population. Scand J Stat 11:265–270

    Google Scholar 

  • Choe Y-H, Kim M, Woo J, Lee MJ, Lee JI, Lee EU, Lee YK (2018) Comparing rock-inhabiting microbial communities in different rock types from a high Arctic polar desert. FEMS Microbiol Ecol. https://doi.org/10.1093/femsec/fiy070

    Article  PubMed  Google Scholar 

  • Davydov D (2005) Terrestrial cyanobacteria of east coast of Grønfjord (West Spitsbergen Island). Complex Investigations of Spitsbergen Nature [kompleksnye Issledovaniya Prirody Shpitsbergena] 5:377–382 (in Russian)

    Google Scholar 

  • Davydov D (2008) Cyanoprokaryota. In: Koroleva NE, Konstantinova NA (eds) Flora and vegetation of Grønfjord area (Spitsbergen archipelago). K and M Apatity, Russia, pp 93–102

    Google Scholar 

  • Davydov D (2011) Diversity of the Cyanoprokaryota of the Grønfjord western coast (Spitsbergen, Svalbard). Botanicheskiy Zhurnal [Russian Bot J] 96:1409–1420 (in Russian)

    Google Scholar 

  • Davydov D (2013) Cyanoprokaryota in polar deserts of Rijpfjorden east coast, North-East Land (Nordaustlandet) Island, Spitsbergen. Algol Stud 142:29–44. https://doi.org/10.1127/1864-1318/2013/0082

    Article  Google Scholar 

  • Davydov D (2014) Diversity of the Cyanoprokaryota of the area of settlement Pyramiden, West Spitsbergen Island, Spitsbergen archipelago. Folia Crypt Est 51:13–23. https://doi.org/10.12697/fce.2014.51.02

    Article  Google Scholar 

  • Davydov D (2016) Diversity of the Cyanoprokaryota in polar deserts of Innvika cove North-East Land (Nordaustlandet) Island, Spitsbergen. Czech Polar Rep 6:66–79. https://doi.org/10.5817/CPR2017-1-10

    Article  Google Scholar 

  • Davydov D (2017) Cyanoprokaryotes of the west part of Oscar II Land, West Spitsbergen Island, Spitsbergen archipelago. Czech Polar Rep 7:94–108. https://doi.org/10.5817/CPR2017-1-10

    Article  Google Scholar 

  • Davydov D (2018) Checklist of cyanobacteria from the European polar desert zone. Botanica 24:185–201. https://doi.org/10.2478/botlit-2018-0018

    Article  Google Scholar 

  • Davydov D, Patova E (2018) The diversity of Cyanoprokaryota from freshwater and terrestrial habitats in the Eurasian Arctic and Hypoarctic. Hydrobiologia 811:119–138. https://doi.org/10.1007/s10750-017-3400-3

    Article  Google Scholar 

  • Davydov D, Shalygin S, Vilnet A (2020) New cyanobacterium Nodosilinea svalbardensis sp. nov. (Prochlorotrichaceae, Synechococcales) isolated from alluvium in Mimer river valley of the Svalbard Archipelago. Phytotaxa 442:61–79. https://doi.org/10.11646/phytotaxa.442.2.2

    Article  Google Scholar 

  • De Los RA, Ascaso C, Wierzchos J, Fernández-Valiente E, Quesada A (2004) Microstructural characterization of cyanobacterial mats from the McMurdo Ice Shelf, Antarctica. Appl Environ Microbiol 70:569–580. https://doi.org/10.1128/aem.70.1.569-580.2004

    Article  Google Scholar 

  • Deming JW, Young JN (2017) The role of exopolysaccharides in microbial adaptation to cold habitats. In: Margesin R (ed) Psychrophiles: from biodiversity to biotechnology. Springer, Cham, pp 259–284. https://doi.org/10.1007/978-3-319-57057-0_12

    Chapter  Google Scholar 

  • Edwards A, Anesio AM, Rassner SM et al (2011) Possible interactions between bacterial diversity, microbial activity and supraglacial hydrology of cryoconite holes in Svalbard. ISME J 5:150–160. https://doi.org/10.1038/ismej.2010.100

    Article  PubMed  Google Scholar 

  • Elster J (2002) Ecological classification of terrestrial algal communities in polar environments. In: Beyer L, Bölter M (eds) Geoecology of Antarctic ice-free coastal landscapes. Springer Verlag, Berlin, Heidelberg, pp 303–326. https://doi.org/10.1007/978-3-642-56318-8_17

    Chapter  Google Scholar 

  • Elvebakk A (1985) Higher phytosociological syntaxa on Svalbard and their use in subdivision of the Arctic. Nordic J Bot 5:273–284

    Article  Google Scholar 

  • Guiry MD, Guiry GM (2020) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Available from https://www.algaebase.org. Accessed 22 Jan 2020

  • Hoel A, Holtedahl O (1911) Les nappes de lave, les volcans et les sourees thermales dans les environs de la Baie Wood au Spitsberg. Videnskapsselskapet Skrifter I. I. Matematisk-naturvidenskabelig klasse 1:1–38

  • Kaštovská K, Elster J, Stibal M, Šantrůčková H (2005) Microbial assemblages in soil microbial succession after glacial retreat in Svalbard (High Arctic). Microb Ecol 50:396–407

    Article  Google Scholar 

  • Kaštovská K, Stibal M, Šabacká M, Černá B, Šantrůčková H, Elster J (2007) Microbial community structure and ecology of subglacial sediments in two polythermal Svalbard glaciers characterized by epifluorescence microscopy and PLFA. Polar Biol 30:277–287

    Article  Google Scholar 

  • Kim GH, Klochkova TA, Kim SH (2008) Notes on freshwater and terrestrial algae from Ny-Ålesund, Svalbard (high Arctic sea area). J Environ Biol 29:485–491

    PubMed  Google Scholar 

  • Kim GH, Klochkova TA, Han JW, Kang S-H, Choi HG, Chung KW, Kim SJ (2011) Freshwater and terrestrial algae from Ny-Ålesund and Blomstrandhalvøya Island (Svalbard). Arctic 64:25–21. https://doi.org/10.14430/arctic4077

    Article  Google Scholar 

  • Komárek J (2010) Recent changes (2008) in cyanobacteria taxonomy based on a combination of molecular background with phenotype and ecological consequences (genus and species concept). Hydrobiologia 639:245–259. https://doi.org/10.1007/s10750-009-0031-3

    Article  Google Scholar 

  • Komárek J (2013) Cyanoprokaryota 3. Teil: Heterocytous genera. In: Büdel B, Gärtner G, Krienitz L, Schlager M (eds) Süsswasserflora von Mitteleuropa 19/3. Springer Spektrum, Berlin, Heidelberg, pp 1–1133

    Chapter  Google Scholar 

  • Komárek J, Anagnostidis K (1998) Cyanoprokaryota 1. Teil: Chroococcales. In: Ettl H, Gärtner G, Heynig G, Mollenhauer D (eds) Süsswasserflora von Mitteleuropa 19/1. Gustav Fisher, Jena, Stuttgart, Lübeck, Ulm, pp 1–548

  • Komárek J, Anagnostidis K (2005) Cyanoprokaryota 2. Teil: Oscillatoriales. In: Büdel B, Gärtner G, Krienitz L, Schlager M (eds) Süsswasserflora von Mitteleuropa 19/2. Elsevier/Spektrum, Heidelberg, pp 1–759

    Google Scholar 

  • Komárek J, Kovacik L (2013) Schizotrichacean cyanobacteria from central Spitsbergen (Svalbard). Polar Biol 36:1811–1822

    Article  Google Scholar 

  • Komárek J, Taton A, Sulek J, Wilmotte A, Kastovksa K, Elster J (2006) Ultrastructure and taxonomic position of two species of the cyanobacterial genus Schizothrix. Cryptogamie Algologie 27:53–62

    Google Scholar 

  • Komárek J, Kovacik L, Elster J, Komárek O (2012) cyanobacterial diversity of Petuniabukta, Billefjorden, central Spitsbergen. Polish Polar Res 33:347–368. https://doi.org/10.2478/v10183-012-0024-1

    Article  Google Scholar 

  • Komárek J, Kaštovský J, Mareš J, Johansen JR (2014) Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014 using a polyphasic approach. Preslia 86:295–335

    Google Scholar 

  • Komárek J, Johansen JR, Smarda J, Strunecky O (2020) Phylogeny and taxonomy of Synechococcus-like cyanobacteria. Fottea 20(2):171–191. https://doi.org/10.5507/fot.2020.006

    Article  Google Scholar 

  • Kubeckova K, Elster J, Kanda H (2001) Periphyton ecology of glacial and snowfed streams, Ny-Ålesund, Svalbard: the influence of discharge disturbances due to sloughing, scraping and peeling. Nova Hedwigia 123:139–170

    Google Scholar 

  • Kvíderová J, Elster J, Šimek M (2011) In situ response of Nostoc commune s.l. colonies to desiccation in Central Svalbard, Norwegian High Arctic. Fottea 11:87–97

    Article  Google Scholar 

  • Kvíderová J, Elster J, Komárek J (2019) Ecophysiology of cyanobacteria in the polar regions. In: Mishra AK, Tiwari DN, Rai AN (eds) Cyanobacteria. Academic Press, Cambridge, pp 277–302. https://doi.org/10.1016/B978-0-12-814667-5.00014-3

    Chapter  Google Scholar 

  • Lagerheim G (1894) Ein Beitrag zur Schneeflora Spitzbergens. La nuova notarisia 650–654

  • Liengen T (1999) Conversion factor between acetylene reduction and nitrogen fixation in free-living cyanobacteria from high arctic habitats. Can J Microbiol 45:223–229

    Article  CAS  Google Scholar 

  • Mai T, Johansen JR, Pietrasiak N, Bohunicka M, Martin MP (2018) Revision of the Synechococcales (Cyanobacteria) through recognition of four families including Oculatellaceae fam. nov. and Trichocoleaceae fam. nov. and six new genera containing 14 species. Phytotaxa 365:1–59. https://doi.org/10.11646/phytotaxa.365.1.1

    Article  Google Scholar 

  • Matuła J (1982) Investigations on the algal flora of West Spitsbergen. Acta Univ Wratislav 525:173–194

    Google Scholar 

  • Matuła J, Pietryka M, Richter D, Wojtun B (2007) Cyanoprokaryota and algae of Arctic terrestrial ecosystems in the Hornsund area, Spitsbergen. Polish Polar Res 28:283–315

    Google Scholar 

  • Melechin AV, Davydov D, Shalygin S, Borovichev EA (2013) Open information system on biodiversity cyanoprokaryotes and lichens CRIS (Cryptogamic Russian Information System). Bull MOIP 118:51–56 (in Russian)

    Google Scholar 

  • Melekhin AV, Davydov DA, Borovichev EA, Shalygin SS, Konstantinova NA (2019) CRIS – service for input, storage and analysis of the biodiversity data of the cryptogams. Folia Crypt Est 56:99–108. https://doi.org/10.12697/fce.2019.56.10

    Article  Google Scholar 

  • Nowakowskiy AB (2016) Interaction between Excel and statistical package R for ecological data analysis. Vestnik Insituta biologii Komi NC UrO RAN 26–33

  • Oleksowicz AS, Luścińska M (1992) Occurrence of algae on tundra soils in Oscar II Land, Spitsbergen. Polish Polar Res 13:131–147

    Google Scholar 

  • Palinska KA, Schneider T, Surosz W (2017) Phenotypic and phylogenetic studies of benthic mat-forming cyanobacteria on the NW Svalbard. Polar Biol 40:1607–1616. https://doi.org/10.1007/s00300-017-2083-6

    Article  Google Scholar 

  • Patova EN, Davydov DA, Andreeva VM (2015) Cyanoprokaryotes and algae. In: Matveyeva NV (ed) Plants and fungi of the polar deserts in the northern hemisphere. Marathon, St. Petersburg, pp 133–166

  • Perkerson RB, Johansen JR, Kovácik L, Brand J, Kastovsky J, Casamatta DA (2011) A unique pseudanabaenalean (cyanobacteria) genus Nodosilinea gen. nov. based on morphological and molecular data. J Phycol 47:1397–1412

    Article  CAS  Google Scholar 

  • Perminova GN (1990) Soil algae of some areas of northern Eurasia and the Far East [Pochvennye vodorosli nekotoryh rajonov severa Evrasii i Dalnego Vostoka]. Kirov, Submitted to VINITI, No. 4471-B90:1–41 [in Russian]

  • Pessi IS, Pushkareva E, Lara Y et al (2019) Marked succession of cyanobacterial communities following glacier retreat in the high arctic. Microbiol Ecol 77:136. https://doi.org/10.1007/s00248-018-1203-3

    Article  CAS  Google Scholar 

  • Plichta W, Luścińska M (1988) Blue-green algae and their influence on development of tundra soils in Kaffiöyra, Oscar II Land, Spitsbergen. Polish Polar Res 9:475–484

    Google Scholar 

  • Pointing SB, Budel B, Convey P, Gillman LN, Korner C, Leuzinger S, Vincent WF (2015) Biogeography of photoautotrophs in the high polar biome. Front Plant Sci 6:692. https://doi.org/10.3389/fpls.2015.00692

    Article  PubMed  PubMed Central  Google Scholar 

  • Przybylak R, Araźny A, Nordli Ø, Finkelnburg R, Kejna M, Budzik T, Migała K, Sikora S, Puczko D, Rymer K, Rachlewicz G (2014) Spatial distribution of air temperature on Svalbard during 1 year with campaign measurements. Int J Climatol 34:3702–3719. https://doi.org/10.1002/joc.3937

    Article  Google Scholar 

  • Pushkareva E, Pessi IS, Wilmotte A, Elster J (2015) Cyanobacterial community composition in Arctic soil crusts at different stages of development. FEMS Microbiol Ecol 91(12):fiv143. https://doi.org/10.1093/femsec/fiv143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pushkareva E, Johansen JR, Elster J (2016) A review of the ecology, ecophysiology and biodiversity of microalgae in Arctic soil crusts. Polar Biol 39:227. https://doi.org/10.1007/s00300-016-1902-5

    Article  Google Scholar 

  • Pushkareva E, Wilmotte A, Láska K, Elster J (2019) Comparison of microphototrophic communities living in different soil environments in the high Arctic. Front Ecol Evol 7:393. https://doi.org/10.3389/fevo.2019.00393

    Article  Google Scholar 

  • Quesada A, Vincent WF (1997) Strategies of adaptation by Antarctic cyanobacteria to ultraviolet radiation. Europ J Phycol 32:335–342

    Article  Google Scholar 

  • Raabová L, Elster J, Kováčik L (2016) Phototrophic microflora colonizing substrates of man-made origin in Billefjorden Region, Central Svalbard. Czech Polar Rep 6:21–30

    Article  Google Scholar 

  • Raabová L, Elster J, Kováčik L, Strunecky O (2019) Review of the genus Phormidesmis (Cyanobacteria) based on environmental, morphological, and molecular data with description of a new genus Leptodesmis. Phytotaxa 395:1–16. https://doi.org/10.11646/phytotaxa.395.1.1

    Article  Google Scholar 

  • Richter D, Matuła J (2013) Leptolyngbya sieminskae sp. n. (Cyanobacteria) from Svalbard. Polish Polar Res 34(2):151–168

    Article  Google Scholar 

  • Richter D, Matuła J, Pietryka M (2009) Cyanobacteria and algae of selected tundra habitats in the Hornsund fiord area (West Spitsbergen). Oceanol Hydrobiol Stud 38:65–70

    Article  Google Scholar 

  • Rippin M, Borchhardt N, Williams L et al (2018a) Genus richness of microalgae and Cyanobacteria in biological soil crusts from Svalbard and Livingston Island: morphological versus molecular approaches. Polar Biol 41:909–923. https://doi.org/10.1007/s00300-018-2252-2

    Article  Google Scholar 

  • Rippin M, Lange S, Sausen N, Becker B (2018b) Biodiversity of biological soil crusts from the Polar Regions revealed by metabarcoding. FEMS Microbiol Ecol. https://doi.org/10.1093/femsec/fiy036

    Article  PubMed  Google Scholar 

  • Skulberg OM (1996) Terrestrial and limnic algae and cyanobacteria. In: Elvebakk A, Prestrud P (eds) A catalogue of Svalbard plants, fungi, algae and cyanobacteria. Norsk Polarinstitutt, Skrifer, Oslo, pp 383–395

    Google Scholar 

  • Solheim B, Endal A, Vigstad A (1996) Nitrogen fixation in Arctic vegetation and soils from Svalbard, Norway. Polar Biol 16:35–40

    Article  Google Scholar 

  • Solheim B, Johanson U, Callaghan TV, Lee JA, Gwynn-Jones D, Björn LO (2002) The nitrogen fixation potential of arctic cryptogram species is influenced by enhanced UV-B radiation. Oecologia 133:90–93

    Article  Google Scholar 

  • Stibal M, Šabacká M, Kaštovská K (2006) Microbial communities on glacier surfaces in Svalbard: impact of physical and chemical properties on abundance and structure of cyanobacteria and algae. Microb Ecol 52:644–654

    Article  Google Scholar 

  • Stockmayer S (1906) Kleiner Beitrag zur Kenntnis der Süsswasseralgenflora Spitzbergens. Oesterreichische Botanische Zeitschrift 56:47–53

    Article  Google Scholar 

  • Strǿm KM (1921) Some algae from hot springs in Spitzbergen. Botaniska Notiser 17–21

  • Strunecky O, Komárek J, Elster J (2012) Biogeography of Phormidium autumnale (Oscillatoriales, Cyanobacteria) in western and central Spitsbergen. Polish Polar Res 33:369–382

    Article  Google Scholar 

  • Summerhayes VS, Elton CS (1923) Contributions to the ecology of Spitsbergen and Bear Island. J Ecol 11:214–286

    Article  Google Scholar 

  • Takeuchi N, Tanaka S, Konno Y, Irvine-Fynn TDL, Rassner SME, Edwards A (2019) Variations in phototroph communities on the ablating bare-ice surface of glaciers on Brøggerhalvøya, Svalbard. Front Earth Sci 7:4. https://doi.org/10.3389/feart.2019.00004

    Article  Google Scholar 

  • Thomasson K (1958) Zur planktonkunde Spitzbergens, 1. Hydrobiologia 12:226–236

    Article  Google Scholar 

  • Thomasson K (1961) Zur planktonkunde Spitzbergens, 2. Hydrobiologia 18:192–198

    Article  Google Scholar 

  • Turicchia S, Ventura S, Schütte U, Soldati E, Zielke M, Solheim B (2005) Biodiversity of the cyanobacterial community in the foreland of the retreating glacier Midtre Lovènbreen, Spitsbergen, Svalbard. Algol Stud 117:427–440. https://doi.org/10.1127/1864-1318/2005/0117-0427

    Article  Google Scholar 

  • Vincent WF (2002) Cyanobacterial dominance in the polar regions. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria: their diversity in time and space. Springer Netherlands, Dordrecht, pp 321–340. https://doi.org/10.1007/0-306-46855-7_12

    Chapter  Google Scholar 

  • Vincent WF (2007) Cold tolerance in cyanobacteria and life in the cryosphere. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments. Springer Netherlands, Dordrecht, pp 287–301. https://doi.org/10.1007/978-1-4020-6112-7

    Chapter  Google Scholar 

  • Waterbury JB (2006) The cyanobacteria – isolation, purification and identification of major groups of cyanobacteria. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt EH (eds) The prokaryotes, 3rd edn. Springer, New York, pp 1053–1073. https://doi.org/10.1007/0-387-30744-3_38

    Chapter  Google Scholar 

  • Willen T (1980) Phytoplankton from lakes and ponds on Vestspitsbergen. Acta Phytogeographica Suecica 68:173–188

    Google Scholar 

  • Wittrock VB (1883) Über die Schnee – und Eisflora, besonders in den arktischen Gegenden. In: Nördenskiold AE (ed) Studier och Forskningar Föranledda af Mina Resor i Höga Norden. Stockholm, pp 2–3

  • Wittrock VB, Nordstedt O (1882) Algae aquae dulcis exsiccatae. Upsaliae, Lundae et Stockholmiae, 21

  • Zakhia F, Jungblut AD, Taton A, Vincent WF, Wilmotte A (2008) Cyanobacteria in cold ecosystems. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, Heidelberg, pp 121–135. https://doi.org/10.1007/978-3-540-74335-4_8

    Chapter  Google Scholar 

  • Zielke M, Ekker AS, Olsen RA, Spjelkavik S, Solheim B (2002) The influence of abiotic factors on biological nitrogen fixation in different types of vegetation in the High Arctic, Svalbard. Arctic, Antarctic and Alpine Res 34:293–299

    Article  Google Scholar 

  • Zielke M, Solheim B, Spjelkavik S, Olsen RA (2005) Nitrogen fixation in the high Arctic: role of vegetation and environmental conditions. Arctic, Antartic and Alpine Res 37:372–378

    Article  Google Scholar 

Download references

Acknowledgements

The work was performed with Russian Science Foundation support project No. 21-14-00029 (https://rscf.ru/project/21-14-00029/) and research work no. AAAA-A18-118050490088-0. The research was done using large-scale research facilities Herbarium at the Polar-Alpine Botanical Garden-Institute (KPABG; Kirovsk, Russia) reg. No. 499397. I am grateful to Angela Carver for the English language edits.

Funding

The study was carried out within institutional research project of the Avrorin Polar-Alpine Botanic Garden-Institute, RAS, No. 0229-2016-0004 and with Russian Science Foundation support project No. 21-14-00029 (https://rscf.ru/project/21-14-00029/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Davydov.

Ethics declarations

Conflict of interest

The author declares no competing or financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1184 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davydov, D. Cyanobacterial diversity of Svalbard Archipelago. Polar Biol 44, 1967–1978 (2021). https://doi.org/10.1007/s00300-021-02931-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-021-02931-3

Keywords

Navigation