Skip to main content

Advertisement

Log in

Food chain, parasites and climate changes in the high Arctic: a case study on trophically transmitted parasites of common eider Somateria mollissima at Franz Josef Land

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Assessment of the impact of climate change on the Arctic nearshore ecosystems requires knowledge of the “reference points”, that is, the state of things before the effects of the warming become pronounced. For parasites, which play an essential role in the nearshore ecosystems, this knowledge is scarce and fragmentary. This study, based on the materials collected at Franz Josef Land (FJL) in 1990–1993, partly fills this gap. We present the first data on the diet of the common eider Somateria mollissima at FJL, the transmission of helminths in its population and the infection of nearshore invertebrates with helminth larvae. We found that gastrointestinal helminth communities were impoverished (only ten species) and dominated by cestodes and acanthocephalans. This is associated with the prevalence of nearshore crustaceans, the intermediate hosts of these helminths, in the diet of the eiders. The absence of the vulnerable free-living larvae also facilitates transmission of helminths parasitizing eiders at FJL. Infection with helminths and the diet were different in ducklings and in adult birds as well as in eiders from different parts of the archipelago. The infection distribution of molluscs and crustaceans with helminth larvae was patchy and higher in the vicinity of the eider colonies. A high-infection intensity of FJL eiders with cestodes and acanthocephalans recorded in our study seems to have a certain negative effect on the bird population. Its significance is likely to grow considering that the transmission of helminths is promoted by the climate warming in the Arctic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abramov VA, Zubakin GK (1993) Ice situation in the Franz Josef Land straits. In: Matishov GG (ed) Environment and ecosystems of the Franz Josef Land (archipelago and shelf). Kola Science Centre Russian Academy Science Publication, Apatity, pp 38–44 (in Russian)

    Google Scholar 

  • Agosta S, Klemens JA (2008) Ecological fitting by phenotypically flexible genotypes: implications for species associations, community assembly and evolution. Ecol Lett 11:1123–1134. https://doi.org/10.1111/j.1461-0248.2008.01237.x

    Article  PubMed  Google Scholar 

  • Agosta S, Janz N, Brooks DR (2010) How generalists can be specialists: resolving the “parasite paradox” and implications for emerging disease. Zoologia 27:151–162. https://doi.org/10.1590/S1984-46702010000200001

    Article  Google Scholar 

  • Anderson RC (2000) Nematode parasites of vertebrates their development and transmission. CABI Publishing, Wallingford

    Book  Google Scholar 

  • Araujo SBL, Braga MP, Brooks DR, Agosta S, Hoberg EP, von Hathental F, Boeger WA (2015) Understanding host-switching by ecological fitting. PLoS ONE 10:e0139225. https://doi.org/10.1371/journal.pone.0139225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Averintsev VG (1993) Communities of the Franz Josef Land shallows. In: Matishov GG (eds) Environment and ecosystems of the Franz Josef Land (archipelago and shelf). Kola Science Centre Russian Academy Science Publication, Apatity, pp 142–171

    Google Scholar 

  • Baillie SR, Milne H (1989) Movements of eiders Somateria mollissima on the East coast of Britain. Bird Study 131:321–335. https://doi.org/10.1111/j.1474-919X.1989.tb02782.x

    Article  Google Scholar 

  • Baruš V, Sergeeva TP, Sonin MD, Ryzhikov KM (1978) Helminths of fish-eating birds of the Palearctic region. I. Nematoda. Academia, Moscow

    Book  Google Scholar 

  • Belopol’skaya MM (1952) Parasite fauna of marine waterfowl. Scientific reports of Leningrad State University (Uchenie Zapiski Leningradskogo Universiteta). 141, ser. Biology 28:127–180 (in Russian)

    Google Scholar 

  • Belopol’skaya MM (1953) Balanus balanoides as an intermediate hosts for parasitic worms. Dokl Acad Nauk USSR 91:437–440 (in Russian)

    Google Scholar 

  • Belopol'skij LO (1957) Ecology of colonial seabirds of the Barents Sea. Acad SCI USSR Publ, Moscow (in Russian) (Transl from Russian, 1961—Israel Prog Sci Transl, Jerusalem)

  • Belopol'skij LO (1971) Feed composition of the Barents Sea seabirds. Sci Reports Kaliningrad State University (Uchenie Zapiski Kaliningradskogo Universiteta) 6:41‒67 (in Russian)

  • Belov MI (1977) In the tracks of the polar expeditions. Gydrometeoisdat, Leningrad (in Russian)

    Google Scholar 

  • Berge J, Johnsen G, Nilsen F, Gulliksen B, Slagstad D (2005) Ocean temperature oscillations enable reappearance of blue mussel Mytilus edulis in Svalbard after 1000 years of absence. Mar Ecol Prog Ser 303:167–175. https://doi.org/10.3354/meps303167

    Article  Google Scholar 

  • Berge J, Renaud PE, Eiane K, Gulliksen B, Cottier FR, Varpe O, Brattegard T (2009) Changes in the decapod fauna of an Arctic fjord during the last 100 years (1908–2007). Polar Biol 32:953–961. https://doi.org/10.1007/s00300-009-0594-5

    Article  Google Scholar 

  • Bianki VV, Boiko NS, Ninburg EA, Shklyarevich GA (1979) Feeding of common eider of the White Sea. In: Uspenskiy SM (ed) Ecology and morphology of eiders in the USSR (Ecologia i morphologia gag v SSSR). Nauka, Moscow, pp 126–170 (in Russian)

    Google Scholar 

  • Bishop CA, Threlfall W (1974) Helminth parasites of the common eider duck, Somateria mollissima (L.), in Newfoundland and labrador. Proc Helminthol Soc Wash 7:25–35

    Google Scholar 

  • Blasco-Costa I, Poulin R (2013) Host traits explain the genetic structure of parasites: a meta-analysis. Parasitology 140:1316–1322. https://doi.org/10.1017/S0031182013000784

    Article  PubMed  Google Scholar 

  • Borgsteede FHM (2001) Common eiders and parasites—are parasites the cause of mass mortality of common eiders in the Wadden Sea? Wadden Sea. News Lett 1:9–21

    Google Scholar 

  • Borgsteede FHM, Okulewicz A, Zoun PEF, Okulewicz J (2005) The gastrointestinal helminth fauna of the eider duck (Somateria mollissima L.) in the Netherlands. Helminthologia 42:83–87. https://doi.org/10.2478/s11687-006-0019-8

    Article  Google Scholar 

  • Borgsteede FHM, Kavetska KM, Zoun PEF (2006) Species of the nematode genus Amidostomum Railliet and Henry, 1909 in aquatic birds in the Netherlands. Helminthologia 43:98–102. https://doi.org/10.2478/s11687-006-0019-8

    Article  Google Scholar 

  • Borkin IV (1983) Results of the ichthyofauna investigations in the Franz Josef Land region and to the North from the Svalbard. In: Matishov GG (ed) Investigations of biology, morphology and physiology of hydrobionts. Kola Science Centre Russian Academy Science Publication, Apatity, pp 32–34 (in Russian)

    Google Scholar 

  • Borkin IV (1993) Fishes inhabiting coastal waters. In: Matishov GG (ed) Environment and ecosystems of the Franz Josef Land (archipelago and shelf). Kola Science Centre Russian Academy Science Publication, Apatity, pp 188–195 (in Russian)

    Google Scholar 

  • Brinkmann A Jr (1956) Trematoda. Zool Icel 2:1–34

    Google Scholar 

  • Brinkmann A Jr (1975) Trematodes from Greenland. Medd Grønland 205:1–88

    Google Scholar 

  • Brooks DR, Hoberg EP, Boeger WA, Gardner SL, Galbreath KE, Herczeg D, Mejía-Madrid HH, Rácz SE, Dursahinhan AT (2014) Finding them before they find us: informatics, parasites, and environments in accelerating climate change. Comp Parasitol 81:155–164. https://doi.org/10.1654/4724b.1

    Article  Google Scholar 

  • Brooks DR, Hoberg EP, Boeger WA (2019) The Stockholm Paradigm: climate change and emerging disease. University of Chicago Press, Chicago Scholarship Online

    Google Scholar 

  • Bush AO, Lafferty KD, Lotz JM, Shostak AW (1997) Parasitology meets ecology on its own terms: Margolis et al revisited. J Parasitol 83:575–583. https://doi.org/10.2307/3284227

    Article  CAS  PubMed  Google Scholar 

  • Bustnes JO, Erikstad KE (1988) The diets of sympatric wintering populations of common eider Somateria mollissima and king eider S. spectabilis in Northern Norway. Ornis Fenn 65:163–168

    Google Scholar 

  • Bustnes JO, Erikstad KE (1993) Site-fidelity in the common eider Somateria mollissima females. Ornis Fenn 70:11–16

    Google Scholar 

  • Bustnes JO, Galaktionov KV (1999) Anthropogenic influences on the infestation of intertidal gastropods by seabird trematodes larvae on the Southern Barents Sea coast. Mar Biol 133:449–453. https://doi.org/10.1007/s002270050484

    Article  Google Scholar 

  • Bustnes JO, Galaktionov KV (2004) Evidence of a state dependent trade-off between energy intake and parasite avoidance in the Steller’s eider. Can J Zool 82:1566–1571. https://doi.org/10.1139/z04-139

    Article  Google Scholar 

  • Bustnes JO, Tertitski GM (2000) Common eider Somateria mollissima. In: Anker-Nilssen T, Bakken V, Strøm H, Golikov AN, Bianki VV, Tatarinkova IP (eds) The status of marine birds breeding in the Barents Sea region. Norsk Polarinstitutt Rapportserie 113, Tromsø, pp 46–50

    Google Scholar 

  • Bustnes JO, Erikstad KE, Hanssen SA, Tveraa T, Folstad I, Skaare JU (2006) Anti-parasite treatment removes negative effects of environmental pollutants on reproduction in an Arctic seabird. Proc R Soc B 273:3117–3122. https://doi.org/10.1098/rspb.2006.3687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byers JE (2021) Marine parasites and disease in the era of global climate change. Annu Rev Mar Sci 13:397–420. https://doi.org/10.1146/annurev-marine-031920-100429

    Article  Google Scholar 

  • Byers JE, Blakeslee AMH, Linder E, Cooper AB, Maguire TJ (2008) Controls of spatial variation in the prevalence of trematode parasites infecting a marine snail. Ecology 89:439–451. https://doi.org/10.1890/06-1036.1

    Article  PubMed  Google Scholar 

  • Camphuysen C, Berrevoets C, Cremers H, Dekinga A, Dekker R, Ens B, Van der Have T, Kats R, Kuiken T, Leopold M, Van der Meer J, Piersma T (2002) Mass mortality of common eiders (Somateria mollissima) in the Dutch Wadden Sea, winter 1999/2000: starvation in a commercially exploited wetland of international importance. Biol Cons 106:303–317. https://doi.org/10.1016/S0006-3207(01)00256-7

    Article  Google Scholar 

  • Cantin M, Bédard J, Milne H (1974) The food and feeding of common eiders in the St. Lawrence estuary in summer. Can J Zool 52:319–334. https://doi.org/10.1139/z74-039

    Article  Google Scholar 

  • Chapskij KK (1941) Marine mammals of the Soviet Arctic. Glavsevmorput’ Press, Moscow (in Russian)

    Google Scholar 

  • Chernova NV (1993) Snailfishes. In: Matishov GG (ed) Environment and ecosystems of the Franz Josef Land (archipelago and shelf). Kola Science Centre Russian Academy Science Publication, Apatity, pp 195–197

    Google Scholar 

  • Clark GM, O’Mera D, van Weelden JM (1958) An epizootic among eider ducks involving an acanthocephalan worm. J Wildl Manag 22:204–205

    Article  Google Scholar 

  • Criscione CD, Blouin MS (2004) Life cycles shape parasite evolution: comparative population genetics of salmon trematodes. Evolution 58(1):198–202. https://doi.org/10.1111/j.0014-3820.2004.tb01587.x

    Article  PubMed  Google Scholar 

  • Csapó HK, Grabowski M, Węsławski JM (2021) Coming home – boreal ecosystem claims Atlantic sector of the Arctic. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.144817

    Article  PubMed  Google Scholar 

  • Dahl TM, Falk-Petersen S, Gabrielsen GW, Sargent JR, Hop H, Millar RM (2003) Lipids and stable isotopes in common eider, black-legged kittiwake and northern fulmar: a trophic study from an Arctic fjord. Mar Ecol-Progr Ser 256:257–269. https://doi.org/10.3354/meps256257

    Article  CAS  Google Scholar 

  • Denisenko SG (2013) Biodiversity and bioresources of macrozoobenthos in the Barents Sea. Structure and long-term changes. Nauka, Saint Petersburg

    Google Scholar 

  • Denisov VV, Matishov DG, Sokolov VT (1993) Hydrometeorological conditions of the Franz Josef Land archipelago. In: Matishov GG (ed) Environment and ecosystems of the Franz Josef Land (archipelago and shelf). Kola Science Centre Russian Academy Science Publication, Apatity, pp 26–38

    Google Scholar 

  • Dzhenyuk SL (2014) Climate-forming factors and climatic features of the Franz Josef Land region. Proceed Kola Sci Center (trudi Kol’skogo Nauchnogo Centra) 4(23):61–69 (in Russian)

    Google Scholar 

  • Efron B (1979) Bootstrap methods: another look at the jackknife. Ann Statist 7:1–26. https://doi.org/10.1214/aos/1176344552

    Article  Google Scholar 

  • Frantzen B, Strøm H, Opheim J (1993) Ornithological notes from Franz Josef Land, Russia, summers 1991 and 1992. In: Gjertz J, Mørved B (eds) Results from scientific cruises to Franz Josef Land. Meddelelser Nr. 126. Norsk Polarinstitutt, Oslo, pp 13–20

    Google Scholar 

  • Fredensborg BL, Mouritsen KN, Poulin R (2006) Relating bird host distribution and spatial heterogeneity in trematodes infection in an intertidal snail-from small to large scale. Mar Biol 149:275–283. https://doi.org/10.1007/s00227-005-0184-1

    Article  Google Scholar 

  • Frolova EA, Akhmetchina OY, Garbul EA, Dikaeva DR, Zimina OL, Lyubina OS, Nekhaev IO, Panteleeva NN, Frolov AA (2014) Benthic communities of the Franz Josef Land region. Proceed Kola Sci Center (trudi Kol’skogo Nauchnogo Centra) 4(23):179–222 (in Russian)

    Google Scholar 

  • Galaktionov KV (1995) Long-term changes in the helminth fauna of colonial seabirds in the Seven Islands Archipelago (Barents Sea, Eastern Murman). In: Skjolda HR, Hopkins C, Erikstad KE, Leinaas HP (eds) Ecology of fjords and coastal waters. Elsevier Science, Amsterdam, pp 489–496

    Google Scholar 

  • Galaktionov KV (1996) Life cycles and distribution of seabird helminths in the Arctic and sub-Arctic regions. Bull Scand Soc Parasitol 6:31–49

    Google Scholar 

  • Galaktionov KV (2017) Patterns and processes influencing helminth parasites of Arctic coastal communities during climate change. J Helminthol 91:387–408. https://doi.org/10.1017/S0022149X17000232

    Article  CAS  PubMed  Google Scholar 

  • Galaktionov KV, Atrashkevich GI (2015) Patterns in circulation and transmission of marine bird parasites in high Arctic: a case of acanthocephalan Polymorphus phippsi (acanthocephala, polymorphidae). Parazitologiya 49:393–411 (in Russian)

    CAS  Google Scholar 

  • Galaktionov KV, Marasaev SF, Marasaeva EF (1993) Parasites in maritime ecosystems. In: Matishov GG (ed) Environment and ecosystems of the Franz Josef Land (archipelago and shelf). Kola Science Centre Russian Academy Science Publication, Apatity, pp 213–221

    Google Scholar 

  • Galaktionov KV, Irwin SWB, Prokofiev VV, Saville DH, Nikolaev KE, Levakin IA (2006) Trematode transmission in coastal communities – temperature dependence and climate change perspectives. In: Proceedings of the 11th International Congress of Parasitology in Glasgow (Scotland), 6–11 Aug 2006, Medimond International Proceedings, pp 85–90

  • Galaktionov KV, Blasco-Costa I, Olson PD (2012) Life cycles, molecular phylogeny and historical biogeography of the ‘pygmaeus’ microphallids (Digenea: Microphallidae): widespread parasites of marine and coastal birds in the Holarctic. Parasitology 139:1346–1360. https://doi.org/10.1017/S0031182012000583

    Article  CAS  PubMed  Google Scholar 

  • Galaktionov KV, Nikolaev KE, Aristov DA, Levakin IA, Kozminsky EV (2019) Parasites on the edge: patterns of trematode transmission in the Arctic intertidal at the Pechora Sea (South-Eastern Barents Sea). Polar Biol 42:1719–1737. https://doi.org/10.1007/s00300-018-2413-3

    Article  Google Scholar 

  • Galkin AK, Galaktionov KV (2000) Finding of Dovekey parasitized by cestode in Franz Josef Land. Parazitologiya 34:249–252 (in Russian)

    CAS  Google Scholar 

  • Galkin AK, Galaktionov KV, Marasaev SF, Prokofyev VV (1994) Cestodes of the fish-eating birds of Kharlov island and Franz Josef Land. Parazitologiya 28:373–384 (in Russian)

    Google Scholar 

  • Galkin AK, Galaktionov KV, Marasaev SF (1999) The occurrence of Microsomacanthus ductilis (Cestoda: Hymenolepididae) in eider ducks of Franz Joseph Land. Parazitologiya 33:113–117 (in Russian)

    Google Scholar 

  • Galkin AK, Regel KV, Mariaux J (2006) Redescription and new data on Microsomacanthus jaegerskioeldi (Fuhrmann, 1913) (Cestoda, Hymenolepididae). Syst Parasitol 64:1–11. https://doi.org/10.1007/s11230-005-9020-8

    Article  PubMed  Google Scholar 

  • Galkin AK, Mariaux J, Regel KV, Skírnisson K (2008) Redescription and new data on Microsomacanthus diorchis (Fuhrmann, 1913) (Cestoda: Hymenolepididae). Syst Parasitol 70:119–130. https://doi.org/10.1007/s11230-008-9134-x

    Article  PubMed  Google Scholar 

  • Garden E, Rayski C, Thom V (1964) A parasitic disease in eider ducks. Bird Study 11:280–287

    Article  Google Scholar 

  • Gavrilo MV, Volkov AE, Ivanov MN (2015) Birds of the Hayes Island Franz Josef Land. Russian Ornitol J 24(1165):2481–2488 (in Russian)

    Google Scholar 

  • Gjertz I, Mørkved B (eds) (1992) Environmental studies from Franz Josef Land, with emphasis on Tikhaia Bay, Hooker Island. Meddelelser Nr. 120. Norsk Polarinstitutt, Oslo

    Google Scholar 

  • Gjertz I, Mørkved B (eds) (1993) Results from scientific cruises to Franz Josef Land. Meddelelser Nr. 126. Norsk Polarinstitutt, Oslo

    Google Scholar 

  • Golikov AN, Skarlato OA (1977) Composition, distribution and ecology of gastropods and bivalves off Franz Josef Land. In: Skarlato OA (ed) Biocenoses of the shelf of Franz Josef Land and the fauna of adjacent waters (Explorations of the fauna of the seas XIV (XXII)). Nauka, Moscow, pp 313–390 (in Russian)

    Google Scholar 

  • Gonchar A, Galaktionov KV (2017) Life cycle and biology of Tristriata anatis (Digenea: Notocotylidae): morphological and molecular approaches. Parasitol Res 116:45–59. https://doi.org/10.1007/s00436-016-5260-6

    Article  PubMed  Google Scholar 

  • Gonchar A, Galaktionov KV (2020) New data support phylogeographic patterns in a marine parasite Tristriata anatis (Digenea: Notocotylidae). J Helminthol 94:e79. https://doi.org/10.1017/S0022149X19000786

    Article  Google Scholar 

  • Gonchar A, Galaktionov KV (2021) It’s marine: distinguishing a new species of Catatropis (Digenea: Notocotylidae) from its freshwater twin. Parasitology 148:74–83. https://doi.org/10.1017/S0031182020001808

    Article  PubMed  Google Scholar 

  • Gonchar A, Jouet D, Skírnisson K, Krupenko D, Galaktionov KV (2019) Transatlantic discovery of Notocotylus atlanticus (Digenea: Notocotylidae) based on life cycle data. Parasitol Res 118:1445–1456. https://doi.org/10.1007/s00436-019-06297-8

    Article  PubMed  Google Scholar 

  • Grenquist P (1970) On mortality of eider ducks caused by acanthocephalan parasites. Suomen Riista 22:24–34

    Google Scholar 

  • Grytner-Zięcina B, Sulgostowska T (1978) Trematodes of Oidemia fusca (L.), Oidemia nigra (L.) and Somateria mollissima (L.) from the Baltic coast. Acta Parasitol Polon 25:121–128

    Google Scholar 

  • Hanssen SA, Folstad I, Erikstad KE, Oksanen A (2003) Costs of parasites in common eiders: effects of antiparasite treatment. Oikos 100:105–111. https://doi.org/10.1034/j.1600-0706.2003.12162.x

    Article  Google Scholar 

  • Hanssen SA, Gabrielsen GW, Bustnes JO et al (2016) Migration strategies of common eiders from Svalbard: implications for bilateral conservation management. Polar Biol 39:2179–2188. https://doi.org/10.1007/s00300-016-1908-z

    Article  Google Scholar 

  • Hechinger RF, Lafferty KD (2005) Host diversity begets parasite diversity: bird final hosts and trematodes in snail intermediate hosts. Proc Roy Soc B 272:1059–1066. https://doi.org/10.1098/rspb.2005.3070

    Article  Google Scholar 

  • Hoberg EP (1984) Alcataenia longicervica sp. n. from murres, Uria lomvia (Linnaeus) and Uria aalge (Pontoppidan) in the North Pacific basin, with redescriptions of Alcataenia armillaris (Rudolphi, 1810) and Alcataenia meinertzhageni (Baer, 1956) (Cestoda: Dilepididae). Can J Zool 62:2044–2052. https://doi.org/10.1139/z84-299

    Article  Google Scholar 

  • Hoberg EP (1986) Evolution and historical biogeography of a parasite-host assemblage: Alcataenia spp. (Cyclophyllidea: Dilepididae) in Alcidae (Charadriiformes). Can J Zool 64:2576–2589. https://doi.org/10.1139/z86-378

    Article  Google Scholar 

  • Hoberg EP (1992) Congruent and synchronic patterns in biogeography and speciation among seabirds, pinnipeds and cestodes. J Parasitol 78:601–615. https://doi.org/10.2307/3283535

    Article  CAS  PubMed  Google Scholar 

  • Hoberg EP (1995) Historical biogeography and modes of speciation across high latitude seas of the Holarctic: concepts for host-parasite coevolution among Phocini (Phocidae) and Tetrabothriidae (Eucestoda). Can J Zool 73:45–57. https://doi.org/10.1139/z95-006

    Article  Google Scholar 

  • Hoberg EP (1996) Faunal diversity among avian parasite assemblages: the interaction of history, ecology, and biogeography. Bull Scand Soc Parasitol 6:65–89

    Google Scholar 

  • Hoberg EP (2005) Marine birds and their helminth parasites. (Chapter 10. Economic, environmental, and medical importance). In: Rohde K (ed) Marine parasitology. CSIRO, Sydney, pp 414–421

    Google Scholar 

  • Hoberg EP, Adams A (1992) Phylogeny, historical biogeography, and ecology of Anophryocephalus spp. (Eucestoda: Tetrabothriidae) among pinnipeds of the Holarctic during the late Tertiary and Pleistocene. Can J Zool 70:703–719. https://doi.org/10.1139/z92-105

    Article  Google Scholar 

  • Hoberg EP, Adams A (2000) Phylogeny, history and biodiversity: understanding faunal structure and biogeography in the marine realm. Bull Scand Soc Parasitol 10:19–37

    Google Scholar 

  • Hoberg EP, Brooks DR (2008) A macroevolutionary mosaic: episodic host-switching, geographic colonization, and diversification in complex host-parasite systems. J Biogeogr 35:1533–1550. https://doi.org/10.1111/j.1365-2699.2008.01951.x

    Article  Google Scholar 

  • Hoberg EP, Soudachanh KM (2020) Insights about diversity of Tetrabothriidae (Eucestoda) among Holarctic Alcidae (Charadriiformes): What is Tetrabothrius jagerskioeldi? MANTER. J Parasit Biodiv. Occasional Papers, Number 11. Available from https://digitalcommons.unl.edu/manter/11. Accessed 17 Jan 2020

  • Hoberg EP, Kutz SJ, Cook J, Galaktionov KV, Haukisalmi V, Henttonen H, Laaksonen S, Makarikov A, Marcogliese DJ (2013) Chapter 15. Parasites. In: Meltofte H (ed) Arctic biodiversity assessment: status and trends in arctic biodiversity. The Conservation of Arctic Flora and Fauna (CAFF). Arctic Council, Akureyri, pp 420–449. Available from https://www.arcticbiodiversity.is/index.php/the-report/chapters/parasites

  • Hoberg EP, Cook JA, Agosta SJ, Boeger W, Galbreath KE, Laaksonen S, KutzBrooks SJDR (2017) Arctic systems in the quaternary: ecological collision, faunal mosaics and the consequences of a wobbling climate. J Helminthol 91:409–421. https://doi.org/10.1017/S0022149X17000347

    Article  CAS  PubMed  Google Scholar 

  • Itämies J, Valtonen ET, Fagerholm HP (1980) Polymorphus minutus (Acanthocephala) infestation in eiders and its role as a possible cause of death. Ann Zool Fenn 17:285–289

    Google Scholar 

  • Josefson AB, Mokievsky V, Bergmann M, Blicher ME, Bluhm B, Cochrane S, Denisenko NV, Hasemann CH, Jorgensen LL, Klages M, Schewe I, Sejr MK, Soltwedel T, Węsławski JM, Włodarska-Kowalczuk M (2013) Chapter 8. Marine invertebrates. In: Meltofte H (ed) Arctic biodiversity assessment: status and trends in Arctic biodiversity. The Conservation of Arctic Flora and Fauna (CAFF). Arctic Council, Akureyri, pp 277–309

    Google Scholar 

  • Kapica AP, Kaplin PA, Sal’nikov CC (eds) (1985) Geography of the World Ocean. The Arctic Ocean and the Southern Ocean, Nauka

    Google Scholar 

  • Karasev AB (1988) The parasite fauna of the polar cod Boreogadus saida (Lepechin). In: Glukhov AA (ed) Biology of fishes in the seas of the European north. PINRO Press, Murmansk, pp 74–83 (in Russian)

    Google Scholar 

  • Karasev AB, Mitenev VK (1993) Parasite fauna of some fishes of the Pechora Sea. In: Mitenev VK (ed) Parasitological studies of fish in the Northern Basin. PINRO Press, Murmansk, pp 5–17 (in Russian)

    Google Scholar 

  • Karasev AB, Oganin IA (2013) Parasite fauna of polar cod. In: Shevelev MS (ed) Polar cod of the Barents Sea. PINRO Press, Murmansk, pp 100–103 (in Russian)

    Google Scholar 

  • Kędra M, Moritz Ch, Choy ES, David C, Degen R, Duerksen S, Ellingsen I, Górska B, Grebmeier JM, Kirievskaya D, van Oevelen D, Piwosz K, Samuelsen A, Węsławski JM (2015) Status and trends in the structure of Arctic benthic food webs. Polar Res 34:23775. https://doi.org/10.3402/polar.v34.23775

    Article  Google Scholar 

  • Køie M (1981) On the morphology, life-history of Podocotyle reflexa (Creplin, 1825) Odhner, 1905, a comparison of its developmental stages with those of P. atomon (Rudolphi, 1802) Odhner, 1905 (Trematoda, Opecoelidae). Ophelia 20:17–43. https://doi.org/10.1080/00785236.1981.10426560

    Article  Google Scholar 

  • Køie M (2009) Boreogadus saida (Lepechin) (Gadidae): a review of its metazoan parasite fauna from Greenland, Eastern Canada, Alaska and the Russian Arctic. Polar Biol 32:1399–1406. https://doi.org/10.1007/s00300-009-0650-1

    Article  Google Scholar 

  • Kondakov AA, Zyryanov SV, Gjertz I, Wiig O (1993) Marine mammals in the Franz Josef Land archipelago communities. In: Matishov GG (ed) Environment and ecosystems of the Franz Josef Land (archipelago and shelf). Kola Science Centre Russian Academy Science Publication, Apatity, pp 197–213

    Google Scholar 

  • Koryakin VG (1988) Glaciers of the Arctic. Nauka, Moscow (in Russian)

    Google Scholar 

  • Krasnov YuV (2014) Ornithological observations on Hooker Island (Franz Josef Land) and in neighboring areas in August 1993. Proceed Kola Sci Center (trudi Kol’skogo Nauchnogo Centra) 4(23):252–263 (in Russian)

    Google Scholar 

  • Krasnov YV, Shklyarevich GA, Goryaev YI (2009) Feeding habit of the common eider Somateria mollissima in the White Sea. Dokl Biol Sci 427:343–345. https://doi.org/10.1134/s0012496609040115

    Article  PubMed  Google Scholar 

  • Kudryavtseva OYu (2014) Review of ichthyophauna in the Franz Josef Land region. Proceed Kola Sci Center (trudi Kol’skogo Nauchnogo Centra) 4(23):222–251 (in Russian)

    Google Scholar 

  • Kuklin VV (2001) On a helminth fauna of seabirds of the Archangelskaya Bay (Northern island of Novaya Zemlya). Parazitologiya 35:124–134 (in Russian)

    CAS  Google Scholar 

  • Kuklin VV, Kuklina MM (2005) Helminths of birds of the Barents Sea: fauna, ecology and impact on the hosts. Kola Science Centre Russian Academy Science Publication, Apatity (in Russian)

    Google Scholar 

  • Kulachkova VG (1958) An ecological and faunistic review of the parasite fauna of the common eider of the Kandalaksha Bay. Trans Kandalaksha State Reserve (trudy Kandalakshskogo Gosudarstvennogo Zapovednika) 1:103–159 (in Russian)

    Google Scholar 

  • Kulachkova VG (1979) Helminths as a cause of common eider’s death in the top of Kandalaksha Gulf. In: Uspenskiy SM (ed) Ecology and morphology of eiders in the USSR (Ecologia i morphologia gag v SSSR). Nauka, Moscow, pp 119–125 (in Russian)

    Google Scholar 

  • Kulachkova VG, Bityukova SV (1980) Intertidal gammarids as a source of helminths infection for the White Sea fishes and birds. In: Verbizkas IB (ed) Problems of parasitology of water invertebrates. Inst Zool Parasitol Lithuanian SSR Academy Science Publication, Vilnius, pp 57–59 (in Russian)

    Google Scholar 

  • Levinsen GMR (1881) Bidrag til Kundskab om Grønlands Trematodfauna. Overs Kgl Dan Vidensk Selsk Forh 1:52–84

    Google Scholar 

  • Loos-Frank B (1969) Zur Kenntnis der gymnophalliden Trematoden des Nordseeraumes I. Die alternativen Zyklen von Gymnophallus choledochus Odhner, 1900. Z Parasitenkd 32:135–156. https://doi.org/10.1007/BF00259976

    Article  CAS  PubMed  Google Scholar 

  • Luppova EN, Anisimova NA, Denisenko SG, Frolova EA (1993) The bottom biocenoses of Franz Josef Land. In: Matishov GG (ed) Environment and ecosystems of the Franz Josef Land (archipelago and shelf). Kola Science Centre Russian Academy Science Publication, Apatity, pp 118–142 (in Russian)

    Google Scholar 

  • Lydersen C, Giertz I, Węsławski JM (1989) Stomach contents of autumn-feeding marine vertebrates from Hornsund, Svalbard. Polar Rec 25(153):107–114. https://doi.org/10.1017/S0032247400010408

    Article  Google Scholar 

  • Madsen FJ (1954) On the food habits of diving ducks in Denmark. Dan Rev Game Biol 2:157–266

    Google Scholar 

  • Marasaeva EF (1990) Ecological analysis of the Gammarus oceanicus parasitofauna at the East Murman intertidal zone. In: Dobrovolskij AA, Galaktionov KV, Strelkov AA (eds) Ecology and morphology of parasites of marine animals. Kola Science Centre Russian Academy Science Publication, Apatity, pp 76–84 (in Russian)

    Google Scholar 

  • Marcogliese DJ (2001) Implications of climate change for parasitism of animals in the aquatic environment. Can J Zool 79:1331–1352. https://doi.org/10.1139/z01-067

    Article  Google Scholar 

  • Markov GS (1941) Parasitic worms of Bezymiannaya Bay (Novaya Zemlya). Dokl Acad Nauk SSSR 30:573–576 (in Russian)

    Google Scholar 

  • Matishov GG, Myslivetz VI, Forman S (1993) Geological structure and conditions of sedimentation. In: Matishov GG (ed) Environment and ecosystems of the Franz Josef Land (archipelago and shelf). Kola Science Centre Russian Academy Science Publication, Apatity, pp 7–19 (in Russian)

    Google Scholar 

  • Matthews PM, Montgomery WI, Hanna REB (1985) Infestation of littorinids by larval Digenea around a small fishing port. Parasitology 90:277–287. https://doi.org/10.1017/S0031182000050988

    Article  Google Scholar 

  • McDonald ME (1969) Catalogue of helminths of waterfowl (Anatidae). Bureau of Sport Fisheries and Wildlife. Special Scientific Report. United States Department of the Interior, Fish and Wildlife Service. Wildlife 126. Washington

  • McGill LM, Shannon AJ, Pisani D, Felix M-A, Ramlov H, Dix I, Wharton DA, Burnell AM (2015) Anhydrobiosis and freezing-tolerance: adaptations that facilitate the establishment of Panagrolaimus nematodes in polar habitats. PLoS ONE 10:e0116084. https://doi.org/10.1371/journal.pone.0116084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGuire R, Suydam R, Quakenbush L, Powell AN (2019) Population trends of king and common eiders from spring migration counts at point Barrow, Alaska between 1994 and 2016. Polar Biol 42:2065–2074. https://doi.org/10.1007/s00300-019-02581-6

    Article  Google Scholar 

  • Meltofte H (ed) (2013) Arctic biodiversity assessment: status and trends in Arctic Biodiversity. The Conservation of Arctic Flora and Fauna (CAFF). Arctic Council, Akureyri. Available from http://www.arcticbiodiversity.is/index.php/the-report/

  • Merkel FR, Jamieson SE, Falk K, Mosbech A (2007) The diet of common eiders wintering in Nuuk, Southwest Greenland. Polar Biol 30:227–234. https://doi.org/10.1007/s00300-006-0176-8

    Article  Google Scholar 

  • Merlo MJ, Etchegoin JA (2011) Testing temporal stability of the larval digenean community in Heleobia conexa (Mollusca: Cochliopidae) and its possible use as an indicator of environmental fluctuations. Parasitology 138:249–256. https://doi.org/10.1017/S0031182010001150

    Article  CAS  PubMed  Google Scholar 

  • Mouritsen KM, Poulin R (2002) Parasitism, climate oscillations, and the structure of natural communities. Oikos 97:462–468. https://doi.org/10.1034/j.1600-0706.2002.970318.x

    Article  Google Scholar 

  • Muzaffar SB (2009) Helminths of murres (Alcida: Uria spp.): markers of ecological change in the marine environment. J Wild Dis 45:672–683

    Article  Google Scholar 

  • Muzaffar SB, Hoberg EP, Jones IL (2005) Possible recent expansion of Alcataenia longicervica (Eucestoda: Dilepididae) parasitic in murres Uria spp. (Alcida) into the North Atlantic. Mar Ornithol 33:189–191

    Google Scholar 

  • Nagasawa K, Baruš V, Ogi H (1998) Stegophorus stellaepolaris (Parona, 1901) (Nematoda: Acuariidae) collected from thick-billed murres (Uria lomvia) of the Bering Sea. Yamashina Inst Ornithol 30:31–35

    Article  Google Scholar 

  • Parker GA, Ball MA, Chubb JC (2015) Evolution of complex life cycles in trophically transmitted helminths. I. Host incorporation and trophic ascent. J Evol Biol 28:267–291. https://doi.org/10.1111/jeb.12575

    Article  CAS  PubMed  Google Scholar 

  • Payer DC, Josefson AB, Fjeldså J (2013) Chapter 2. Species diversity in the Arctic. In: Meltofte H (ed) Arctic biodiversity assessment: status and trends in Arctic biodiversity. The Conservation of Arctic Flora and Fauna (CAFF). Arctic Council, Akureyri, pp 67–77

    Google Scholar 

  • Persson L, Borg K, Fält H (1974) On the occurrence of endoparasites in eider ducks in Sweden. Viltrevy-Stockholm 9:1–24

    Google Scholar 

  • Petersen H (1984) Parasitism in bivalves from an Arctic ecosystem. Helgoländer Meeresunters 37:201–205. https://doi.org/10.1007/BF01989304

    Article  Google Scholar 

  • Pethon P (1967) Food and feeding habits of the common eider (Somateria mollissima). Nytt Mag Zool 15:97–111

    Google Scholar 

  • Petrochenko VI (1958) Acanthocephala (thornyheads) of domestic and wild animals, vol II. USSR Academy of Sciences Press, Moscow (in Russian)

    Google Scholar 

  • Phoenix GK, Lee JA (2004) Predicting impacts of Arctic climate change: past lessons and future challenges. Ecol Research 19:65–74. https://doi.org/10.1111/j.1440-1703.2003.00609.x

    Article  Google Scholar 

  • Polyanskij Yu I (1955) Parasites of the fish of the Barents Sea. The parasitology of fish of northern marine waters of the USSR. Trans Zool Inst Acad Sci USSR 19:5–170 (in Russian Translated in 1966 by Israel Program for Scientific Translations, Jerusalem)

    Google Scholar 

  • Poulin R (2006) Global warming and temperature-mediated increases in cercarial emergence in trematode parasites. Parasitology 132:143–151. https://doi.org/10.1017/S0031182005008693

    Article  CAS  PubMed  Google Scholar 

  • Provencher JF, Forbes MR, Mallory ML, Wilson S, Gilchrist HG (2017) Anti-parasite treatment, but not mercury burdens, influence nesting propensity dependent on arrival time or body condition in a marine bird. Sci Total Environ 575:849–857. https://doi.org/10.1016/j.scitotenv.2016.09.130

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from https://www.R-project.org/

  • Regel КV, Atrashkevich GI (2008) The role of marine arthropods in the life cycles of the cestodes genus Microsomacanthus at Bering Sea coast of Chukchi peninsula. First results of the investigation. Parazitologiya 42:31–40 (in Russian)

    CAS  Google Scholar 

  • Ryzhikov KM (1962) Psilostoma borealis sp. nov. and Gimnophallus minor sp. nov. – new trematodes from birds of the order Anseriformes. Helminthologia 4:424–429 (in Russian)

    Google Scholar 

  • Ryzhikov KM, Timofeeva TN, Dudorova EN (1966) The knowledge of trematodes from eiders of Chukotka. Tr Gel’mintol Lab 17:157–168 (in Russian)

    Google Scholar 

  • Semushin AV, Novoselov AP, Sherstkov VS, Levitsky AL, Novikova YV (2019) Long-term changes in the ichthyofauna composition of the Pechora Sea (South-Eastern Barents Sea) as a result of the temperature factor. Polar Biol 42:1739–1751. https://doi.org/10.1007/s00300-018-2405-3

    Article  Google Scholar 

  • Shapkin VA, Gulyaev VD (1973) On the biology of cestodes of the genus Lateriporus Fuhurmann. Parazitologiya 7:509–512 (in Russian)

    CAS  Google Scholar 

  • Skírnisson K (2015) Association of helminth infections and food consumption in common eiders Somateria mollissima in Iceland. J Sea Res 104:41–50. https://doi.org/10.1016/j.seares.2015.05.005

    Article  Google Scholar 

  • Skírnisson K, Guðmundsdóttir B, Andrésdóttir V, Galaktionov KV (2003) ITS1 nuclear rDNA sequences used to clear the life cycle of the morphologically different larvae and adult renicolid (Renicola, Digenea) parasites found in Iceland. Bull Scand Soc Parasitol 12–13:50

    Google Scholar 

  • Skírnisson K, Galaktionov KV, Kozminsky EV (2004) Factors influencing the distribution of digenean (Trematoda, Digenea) infections in a mudsnail (Hydrobia ventrosa) population inhabiting saltmarsh ponds in Iceland. J Parasitol 90:50–59. https://doi.org/10.1645/GE-118R

    Article  PubMed  Google Scholar 

  • Skryabin KI (1926) Study of the helminthological collection sampled by the expedition of G.Ya. Sedov to the North Pole in 1912–1914. Proc State Inst Exp Vet (trudi Gosudarstvennogo Instituta Experementalnoi Veterenarii) 4:114–121 (in Russian)

    Google Scholar 

  • Smith NF (2001) Spatial heterogeneity in recruitment of larval trematodes to snail intermediate hosts. Oecologia 127:115–122. https://doi.org/10.1007/s004420000560

    Article  PubMed  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry, 3rd edn. W.H. Freeman, New York

    Google Scholar 

  • Stempniewicz L, Meissner W (1999) Assessment of the zoobenthos biomass consumed yearly by diving ducks wintering in the Gulf of Gdansk Southern Baltic. Ornis Svecica 9:143–154. https://doi.org/10.34080/os.v9.22906

    Article  Google Scholar 

  • Stempniewicz L, Goc M, Kidawa D, Urbański J, Hadwiczak M, Zwolicki A (2017) Marine birds and mammals foraging in the rapidly deglaciating Arctic fjord – numbers, distribution and habitat preferences. Clim Change 140:533–548. https://doi.org/10.1007/s10584-016-1853-4

    Article  Google Scholar 

  • Stempniewicz L, Goc M, Głuchowska M, Kidawa D, Węsławski JM (2021) Abundance, habitat use and food consumption of seabirds in the high-Arctic fjord ecosystem. Polar Biol 44:739–750. https://doi.org/10.1007/s00300-021-02833-4

    Article  Google Scholar 

  • Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) (2013) IPCC, 2013: climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Studer A, Thieltges DW, Poulin R (2010) Parasites and global warming: net effects of temperature on an intertidal host–parasite system. Mar Ecol Prog Ser 415:11–22. https://doi.org/10.3354/meps08742

    Article  Google Scholar 

  • Sukhotin A, Denisenko S, Galaktionov K (2019) Pechora Sea ecosystems: current state and future challenges. Polar Biol 42:1631–1645. https://doi.org/10.1007/s00300-019-02553-w

    Article  Google Scholar 

  • Swennen C (1990) Dispersal and migratory movements of eiders Somateria mollissima. Ornis Scand 21:17–27. https://doi.org/10.2307/3676374

    Article  Google Scholar 

  • Symon C, Arris L, Heal B (eds) (2005) Arctic Climate Impact Assessment (ACIA). Cambridge University Press, New York

    Google Scholar 

  • Symon C (ed) (2012) Arctic climate issues 2011: changes in Arctic snow, water, ice and permafrost. SWIPA 2011 overview report. Arctic Monitoring and Assessment Programme (AMAP), Oslo

    Google Scholar 

  • Thieltges DW, Hussel B, Baekgaard H (2006) Endoparasites in common eiders Somateria mollissima from birds killed by an oil spill in the northern Wadden Sea. J Sea Res 55:301–308. https://doi.org/10.1016/j.seares.2005.12.001

    Article  Google Scholar 

  • Thom VM, Garden EA (1955) A heavy mortality among eider ducks. Fair Isle Bird Obs Bull 2:325

    Google Scholar 

  • Thompson AB (1985) Profilicollis botulus (Acanthocephala) abundance in the eider duck (Somateria mollissima) on the Ythan estuary, Aberdeenshire. Parasitology 91:563–575. https://doi.org/10.1017/S0031182000062806

    Article  PubMed  Google Scholar 

  • Threlfall W (1971) Helminth parasites of alcids in the northwestern North Atlantic. Can J Zool 49:461–466. https://doi.org/10.1139/z71-071

    Article  CAS  PubMed  Google Scholar 

  • Tiedemann R, von Kistowski KG, Noer H (1999) On sex-specific dispersal and mating tactics in the Common Eider Somateria mollissimaas inferred from the genetic structure of breeding colonies. Behaviour 136:1145–1155

    Article  Google Scholar 

  • Tourangeau J, Provencher JF, Gilchrist HG, Mallory ML, Forbes MR (2019) Sources of variation in endohelminth parasitism of common eiders over-wintering in the Canadian Arctic. Polar Biol 42:307–315. https://doi.org/10.1007/s00300-018-2423-1

    Article  Google Scholar 

  • Treonis AM, Wall DH (2005) Soil nematodes and desiccation survival in the extreme arid environment of the Antarctic dry valleys. Integr Comp Biol 45:741–750. https://doi.org/10.1093/icb/45.5.741

    Article  PubMed  Google Scholar 

  • Tzvetkova NL (1977) Inshore gammarids of the North and the Far East seas of the USSR and adjacent waters. Nauka, Leningrad (in Russian)

    Google Scholar 

  • Uspenskaya AV (1963) Parasite fauna of benthic crustaceans of the Barents Sea. USSR Acad Sci Press, Moscow (in Russian)

    Google Scholar 

  • Uspenskij SM, Tomkovich PS (1986) Birds of Franz Josef Land and their protection. In: Korotkevich ES, Uspensky SM (eds) Nature complexes of Arctic and their protection. Gidrometeoisdat, Leningrad, pp 63–76 (in Russian)

    Google Scholar 

  • Uspenskij SM, Belikov SE, Bulavintsev VI (1983) Preconditions of the creation of protected zones in the Franz Josef Land region. In: Yazan YuP (ed) Natural reserve business in the USSR. USSR, Moscow, pp 98–102 (in Russian)

    Google Scholar 

  • Vestbo S, Hindberg C, Forbes MR, Malloryc ML, Merkel F, Steenweg RJ, Funcha P, Grant GH, Robertson GJ, Provencher JF (2019) Helminths in common eiders (Somateria mollissima): sex, age, and migration have differential effects on parasite loads. Int J Parasitol 9:184–194. https://doi.org/10.1016/j.ijppaw.2019.05.004

    Article  Google Scholar 

  • Waltho C, Coulson J (2015) The common eider. T & AD Poyser, London

    Google Scholar 

  • Węsławski JM (1994) Gammarus (Crustacea, Amphipoda) from Svalbard and Franz Josef Land distribution and density. Sarsia 79:145–150. https://doi.org/10.1080/00364827.1994.10413553

    Article  Google Scholar 

  • Węsławski JM (2004) The marine fauna of Arctic islands as bioindicators. In: Skreslet S (ed) Jan Mayen island in scientific focus. Kluwer Acad Publ, Dordrecht, pp 173–180

    Chapter  Google Scholar 

  • Węsławski JM, Linkowski TB, Herra T (1990) Fishes. In: Klekowski RZ, Węsławski JM (eds) Atlas of the marine fauna of Southern Spitzbergen. Polish Academy of Sciences Press, Wrocław, pp 99–195

    Google Scholar 

  • Węsławski JM, Stempiewicz L, Galaktionov KV (1994) Summer diet of seabirds from Franz Josef Land archipelago. Polar Res 13:173–181. https://doi.org/10.1111/j.1751-8369.1994.tb00447.x

    Article  Google Scholar 

  • Węsławski JM, Wiktor J Jr, Kotwicki L (2010) Increase in biodiversity in the Arctic rocky littoral, Sorkappland, Svalbard, after 20 years of climate warming. Mar Biodivers 40:123–130. https://doi.org/10.1007/s12526-010-0038-z

    Article  Google Scholar 

  • Węsławski JM, Kendall MA, Włodarska-Kowalczuk M, Iken K, Kędra M, Legezynska J, Sejr MK (2011) Climate change effects on Arctic fjord and coastal macrobenthic diversity – observations and predictions. Mar Biodivers 41:71–85. https://doi.org/10.1007/s12526-010-0073-9

    Article  Google Scholar 

  • Zhukov EV, Strelkov YA (1959) Fish parasites in the seas of the Far East (Russ.). Proc Conf Fish Diseases, Isd Acad Nauk USSR, Moscow-Leningrad (Engl. transl Israel Progr. Sc. Transl 1963:198‒202)

  • Zubakin GK, Buzin IV, Skutina EA (2006) Seasonal and long-term variability of ice cover of the Barents Sea. In: Zubakin GK (ed) Ice formations of the seas of West Arctic. Arctic and Antarctic Inst, St Petersburg, pp 10–26 (in Russian)

    Google Scholar 

Download references

Acknowledgements

We thank the crew of the RV Pomor, whose excellent professional skills made it possible for us to work in the nearshore waters of the high-Arctic Franz Josef Land archipelago. We also thank the colleagues who helped us with the collection and primary treatment of the material during expeditions, especially Dr V.G. Averintsev and Dr S.F. Marasaev. We are grateful to Dr A.K. Galkin and Dr G.I. Atrashkevich for valuable help with species identification of cestodes and acanthocephalans and Dr I.A. Levakin for his help with statistics. K.G. is grateful to Natalia Lentsman for her help with the translation into English. We acknowledge Dr Eric P. Hoberg and two anonymous reviewers for their advice to improve this manuscript.

Funding

The expeditions onboard RV Pomor and the field work at the Hooker Island scientific station in 1990‒1993 were funded by the joint Norwegian–Russian–Polish project (Sov-Nor-Pol) and the research programmes of the Murmansk Marine Biological Institute (Russia), the Polar Research Institute (Norway) and the Institute of Oceanology (Poland). The species identification of the common eider helminths was financed by the research programme of the Zoological Institute RAS (grant no. AAAA-A19-119020690109-2). The treatment and analysis of the parasitological data were supported by the Russian Science Foundation (grant no. 18-14-00170).

Author information

Authors and Affiliations

Authors

Contributions

All authors took part in sampling material during the Franz Josef Land expeditions in 1990–1993. J.M.W. and L.S. analysed the data on common eider feeding, K.G. – parasitological data. K.G. designed research. All authors collaborated in discussing the material and writing the manuscript.

Corresponding author

Correspondence to Kirill V. Galaktionov.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

The permission required for animal care, both of common eiders and benthic invertebrates, was acquired as appropriate in the office of the Federal Nature Management supervision service (Rosprirodnadzor) of the Arkhangelsk region.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galaktionov, K.V., Węsławski, J.M. & Stempniewicz, L. Food chain, parasites and climate changes in the high Arctic: a case study on trophically transmitted parasites of common eider Somateria mollissima at Franz Josef Land. Polar Biol 44, 1321–1342 (2021). https://doi.org/10.1007/s00300-021-02881-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-021-02881-w

Keywords

Navigation