Skip to main content

Advertisement

Log in

Community structure and spatial distribution of phytoplankton in relation to hydrography in the Laptev Sea and the East Siberian Sea (autumn 2008)

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

The Laptev Sea and the East Siberian Sea are remote areas of the Arctic region where detailed data on phytoplankton composition and spatial distribution remain limited. In the context of the ongoing environmental changes (increasing warming and ice melting) and prospective exploration activities (oil and gas production) on the Arctic shelves, understanding of the seasonal and interannual phytoplankton community dynamics is of critical importance. Our study provides new specifying data on species composition of phytoplankton over the vast area of the Laptev Sea shelf and the East Siberian Sea shelf. We found that the outer shelf of the Laptev and East Siberian seas was characterized by typical late spring diatom species (Chaetoceros furcellatus, Chaetoceros diadema, Chaetoceros debilis, Chaetoceros constrictus). On the inner shelf of the Laptev Sea, which is strongly affected by the Lena River water masses, the phytoplankton were characterized by the transition from the summer to an autumn stage of development. Local algal assemblages were composed by mixo- and heterotrophic dinoflagellates (Dinophysis and Protoperidinium genera) together with marine and brackish water-marine diatoms (Thalassiosira hyperborea, Thalassiosira baltica, Thalassiosira gravida, Thalassiosira nordenskioeldii) accompanied by sporadically occurring freshwater riverine planktonic diatom species (Aulacoseira granulata, Aulacoseira italica, Asterionella formosa). These variations in species composition over the Laptev Sea shelf were attributed to differences in the hydrography, marine chemical conditions, and the sea-ice regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abakumov VA (1983) Guide to methods of hydrobiological analysis of surface waters and bottom sediments. Gidrometizdat, Leningrad (in Russian)

    Google Scholar 

  • Agusti S, Sejr MK, Duarte C (2010) Impact of climate warming on polar marine freshwater ecosystems. Polar Biol 33:1595–1598. https://doi.org/10.1007/s00300-010-0955-0

    Article  Google Scholar 

  • Arrigo K, Dijken GL (2015) Continued increases in Arctic Ocean primary production. Prog Oceanogr 136:60–70. https://doi.org/10.1016/j.pocean.2015.05.002

    Article  Google Scholar 

  • Bauch D, Dmitrenko IA, Wegner C, Hölemann J, Kirillov SA, Timokhov LA, Kassens H (2009) Exchange of Laptev Sea and Arctic Ocean halocline waters in response to atmospheric forcing. J Geophys Res 114(5):C05008. https://doi.org/10.1029/2008JC005062

    Article  Google Scholar 

  • Bauerfeind E, Noethig EM, Beszczynska A, Fahl K, Kaleschke L, Kreker K, Klages M, Soltwedel T, Lorenzen C, Wegner J (2009) Particle sedimentation patterns in the eastern Fram Strait during 2000–2005: results from the Arctic long-term observatory HAUSGARTEN. Deep Sea Res I 56:1471–1487. https://doi.org/10.1016/j.dsr.2009.04.011

    Article  CAS  Google Scholar 

  • Beklemishev CW, Semina HJ (1986) Geography of planktonic diatoms of high and temperate latitudes of the ocean. In: Moiseyev PA (ed) Biotopic basis of distribution of marine organisms. Nauka, Moscow, pp 7–23 (in Russian)

    Google Scholar 

  • Berard-Therriault L, Poulin M, Bosse L (1999) Guide d’identification du phytoplankton marin de l’estuaire et du golfe du Saint-Laurent. Les presses scientifiques du CNRC, Ottawa

    Google Scholar 

  • Cauwet G, Sidorov I (1996) The biogeochemistry of Lena River: organic carbon and nutrients distribution. Mar Chem 53:211–227. https://doi.org/10.1016/0304-4203(95)00090-9

    Article  CAS  Google Scholar 

  • Dittmar T, Kattner G (2003) The biogeochemistry of the river and shelf ecosystem of the Arctic Ocean: a review. Mar Chem 83:103–120. https://doi.org/10.1016/S0304-4203(03)00105-1

    Article  CAS  Google Scholar 

  • Dmitrenko IA, Kirillov SA, Krumpen T, Makhotin M, Pavl Abrahamsen E, Willmes S, Bloshkina E, Hölemann J, Kassens H, Wegner C (2010a) Wind-driven diversion of summer river runoff preconditions the Laptev Sea coastal polynya hydrography: evidence from summer-to-winter hydrographic records of 2007–2009. Cont Shelf Res 30(15):1656–1664. https://doi.org/10.1016/j.csr.2010.06.012

    Article  Google Scholar 

  • Dmitrenko IA, Kirillov SA, Tremblay LB, Bauch D, Hölemann JA, Krumpen T, Kassens H, Wegner C, Heinemann G, Schröde D (2010b) Impact of the Arctic Ocean Atlantic water layer on Siberian shelf hydrography. J Geophys Res 115(C8):1–17. https://doi.org/10.1029/2009JC006020

    Article  Google Scholar 

  • Ferrario ME, Sar EA, Vernet M (1998) Chaetoceros resting spores in the Gerlache strait, Antarctic Peninsula. Polar Biol 19:286–288. https://doi.org/10.1007/s003000050247

    Article  Google Scholar 

  • Gogorev RM (1994) Some features of the horizontal distribution of phytoplankton in the Laptev Sea (August-September 1993). In: Timokhov LA (ed) Scientific results of the expedition LAPEX-93. University Press, St. Petersburg, pp 337–352

    Google Scholar 

  • Gogorev RM, Orlova TYu, Shevchenko OG, Stonik IV (2006) The diatoms of Russia and adjacent countries: fossil and recent, vol II. University Press, St. Petersburg (in Russian)

    Google Scholar 

  • Gordeev VV (2000) River input of water, sediment, major ions, nutrients and trace metals from Russian territory to the Arctic Ocean. In: Lewis EL, Jones EP, Lemke P, Prowse TD, Wadhams P (eds) The freshwater budget of the Arctic Ocean. Kluwer Academic Publisher, Dordrecht, pp 297–322

    Chapter  Google Scholar 

  • Hart TJ, Currie RI (1960) The benguela current. Discov Rep 31:123–298

    Google Scholar 

  • Hegseth EN (1998) Primary production in the Northern Barents Sea. Polar Res 17(2):113–123. https://doi.org/10.3402/polar.v17i2.6611

    Article  Google Scholar 

  • Heiskanen AS, Keck A (1996) Distribution and sinking rates of phytoplankton, detritus, and particulate biogenic silica in the Laptev Sea and Lena River (Arctic Siberia). Mar Chem 53:229–245. https://doi.org/10.1016/0304-4203(95)00091-7

    Article  CAS  Google Scholar 

  • Hillebrand H, Dürselen CD, Kirschtel D, Pollingher U, Zohary T (1999) Biovolume calculation for pelagic and benthic microalgae. J Phycol 35(2):403–424. https://doi.org/10.1046/j.1529-8817.1999.3520403.x

    Article  Google Scholar 

  • Hirche HJ, Kosobokova KN, Gaye-Haake B, Harms I, Meon B, Nöthig EM (2006) Structure and function of contemporary food webs on Arctic shelves: a panarctic comparison. The pelagic system of the Kara Sea-communities and components of carbon flow. Prog Oceanogr 71:288–313. https://doi.org/10.1016/j.pocean.2006.09.010

    Article  Google Scholar 

  • Hölemann J, Kirillov S, Klagge T, Novikhin A, Kassens H, Timokhov L (2011) Near-bottom water warming in the Laptev Sea in response to atmospheric and sea ice conditions in 2007. Polar Res. https://doi.org/10.3402/polar.v30i0.6425

    Article  Google Scholar 

  • Holmes RM, Peterson BJ, Gordeev VV, Zhulidov AV, Meybeck M, Lammers RB, Vorosmarty CJ (2000) Flux of nutrients from Russian rivers to the Arctic Ocean: can we establish a baseline against which to judge future changes? Water Resour Res 36:2309–2320. https://doi.org/10.1029/2000WR900099

    Article  CAS  Google Scholar 

  • Holmes RM, McClelland JW, Peterson BJ, Tank SE, Bulygina E, Eglinton TI, Gordeev VV, Gurtovaya TY, Raymond PA, Repeta DJ, Staples R, Striegl RG, Zhulidov AV, Zimov SA (2011) Seasonal and annual fluxes of nutrients and organic matter from large rivers to the Arctic Ocean and surrounding seas. Estuar Coasts 35:369–382. https://doi.org/10.10007/s12237-011-9386-6

    Article  Google Scholar 

  • Hoppenrath M, Murray SA, Chomérat N, Horiguchi T (2014) Marine benthic dinoflagellates—unveiling their worldwide biodiversity. Stuttgart, Germany

    Google Scholar 

  • Huisman J, Pham Thi NN, Karl DM, Sommeijer B (2006) Reduced mixing generates oscillations and chaos in the oceanic deep chlorophyll maximum. Nature 439:322–325. https://doi.org/10.1038/nature04245

    Article  CAS  PubMed  Google Scholar 

  • Ilyash LV, Gitina LS, Fedorova VD (2003) Phytoplankton of the White Sea. Yanys-K, Moscow (in Russian)

    Google Scholar 

  • Ilyash LV, Radchenko IG, Kuznetsov LL, Lisitzyn AP, Martynova DM, Novigatskiy AN, Chultsova AL (2011) Spatial variability of the species composition, abundance, and productivity of the phytoplankton in the White Sea in the late summer period. Oceanology 51(1):19–26. https://doi.org/10.1134/S000143701101005X

    Article  Google Scholar 

  • Ivanov VV, Piskun AA (1995) Distribution of river water and suspended sediments in the river deltas of the Laptev Sea. Rep Polar Res 176:142–153

    Google Scholar 

  • Ivanov VV, Piskun AA (1999) Distribution of river water and suspended sediment loads in the deltas of rivers in the basins of the Laptev and East-Siberian Seas. In: Kassens H, Bauch HA, Dmitrenko I, Eicken H, Hubberten HW, Melles M, Tiede J, Timokhov L (eds) Land-ocean systems in the Siberian Arctic: dynamics and history. Springer-Verlag, Berlin, pp 239–250

    Chapter  Google Scholar 

  • Janout M, Hölemann J, Juhls B, Krumpen T, Rabe B, Bauch D, Wegner C, Kassens H, Timokhov L (2016a) Episodic warming of near-bottom waters under the Arctic sea ice on the central Laptev Sea shelf. Geophys Res Lett 43:264–272. https://doi.org/10.1002/2015GL066565

    Article  Google Scholar 

  • Janout MA, Hölemann J, Waite AM, Krumpen T, von Appen W-J, Martynov F (2016b) Sea-ice retreat controls timing of summer plankton blooms in the Eastern Arctic Ocean. Geophys Res Lett 43:12493–12501. https://doi.org/10.1002/2016GL071232

    Article  Google Scholar 

  • Johnson MA, Polyakov I (2001) The Laptev Sea as a source for recent Arctic Ocean salinity change. Geophys Res Lett 28(10):2017–2020. https://doi.org/10.1029/2000GL012740

    Article  Google Scholar 

  • Jouse AP (1962) Stratigraphic and paleogeographic studies in the Northwestern Pacific Ocean. Publishing House of the USSR Academy of Sciences, Moscow (in Russian)

    Google Scholar 

  • Juterzenka K, Knickmeier K (1999) Chlorophyll a distribution in water column and sea ice during the Laptev Sea freeze-up study in autumn 1995. In: Kassens H, Bauch HA, Dmitrenko I, Eicken H, Hubberten HW, Melles M, Tiede J, Timokhov L (eds) Land-and-ocean systems in the Siberian Arctic: dynamics and history. Springer-Verlag, Berlin, pp 153–160

    Chapter  Google Scholar 

  • Juul-Pedersen T, Michel C, Gosselin M (2008) Influence of the Mackenzie River plume on the sinking export of particulate material on the shelf. J Marine Syst 74:810–824. https://doi.org/10.1016/j.jmarsys.2008.02.001

    Article  Google Scholar 

  • Kattner G, Lobbes JM, Fitznar HP, Engbrodt R, Nothig EM, Lara RJ (1999) Tracing dissolved organic substances and nutrients from the Lena River through Laptev Sea (Arctic). Mar Chem 65:25–39. https://doi.org/10.1016/S0304-4203(99)00008-0

    Article  CAS  Google Scholar 

  • Kiselev IA (1932) Materials on the microflora of the southeastern Laptev Sea. Investigations of the Seas of the USSR. State Hydrological Institute, Leningrad, pp 67–103 (in Russian)

    Google Scholar 

  • Kiselev IA (1950) Armoured flagellates (Pancirnye zhgutikonoscy). Publishing House of the USSR Academy of Sciences, Moscow-Leningrad (in Russian)

    Google Scholar 

  • Kraberg A, Baumann M, Durselen CD (2010) Coastal phytoplankton: photo guide for Northern European Seas. Verlag Dr Fiedrich Pfeil, Munich

    Google Scholar 

  • Kraberg AC, Druzhkova E, Heim B, Loeder MJG, Wiltshire KH (2013) Phytoplankton community structure in the Lena Delta (Siberia, Russia) in relation to hydrography. Biogeosciences 10:7263–7277. https://doi.org/10.5194/bg-10-7263-2013

    Article  Google Scholar 

  • Lalande C, Nöthig EM, Somavilla R, Bauerfeind E, Shevchenko V, Okolodkov Y (2014) Variability in under-ice export fluxes of biogenic matter in the Arctic Ocean. Global Biogeochem Cycles 28:571–583. https://doi.org/10.1002/2013GB004735

    Article  CAS  Google Scholar 

  • Lasternas S, Agustí S (2010) Phytoplankton community structure during the record Arctic ice-melting of summer 2007. Polar Biol 33(12):1709–1717. https://doi.org/10.1007/s00300-010-0877-x

    Article  Google Scholar 

  • Li WK, McLaughlin FA, Lovejoy C, Carmack EC (2009) Smallest algae thrive as the Arctic Ocean freshens. Science 326:539. https://doi.org/10.1126/science.1179798

    Article  CAS  PubMed  Google Scholar 

  • Longhurst A (1995) Seasonal cycles of pelagic production and consumption. Prog Oceanol 36:77–167. https://doi.org/10.1016/0079-6611(95)00015-1

    Article  Google Scholar 

  • Plankton algocenoses of estuary systems. The Barents, Kara and Azov seas. Nauka, Moscow (in Russian)

  • Makarevich PR, Druzhkova EI (2010) Seasonal cyclic processes in offshore planktonic algocenoses of northern seas. Izd YuNTs RAN, Rostov-na-Donu (in Russian)

    Google Scholar 

  • Makarevich PR, Larionov VV, Druzhkov NV, Druzhkova EI (2003) The role of phytoplankton from the Ob River in biological productivity of the Ob–Yenisei shoal. Russ J Ecol 34(2):86–90. https://doi.org/10.1023/A:1023090812603

    Article  Google Scholar 

  • Makarevich PR, Larionov VV, Moiseev DV (2014) Phytoplankton succession in the Ob-Yenisei shallow zone of the Kara Sea based on Russian databases. J Sea Res 101:31–40. https://doi.org/10.1016/j.seares.2014.10.008

    Article  Google Scholar 

  • Makarova IV (2002) The diatoms of Russia and adjacent countries: fossil and recent, vol II. University Press, St. Petersburg (in Russian)

    Google Scholar 

  • Martin J, Tremblay JÉ, Gagnon J, Tremblay J, Lapoussière A, Jose C, Poulin M, Gosselin M, Gratton Y, Michel C (2010) Prevalence, structure and properties of subsurface chlorophyll maxima in Canadian Arctic waters. Mar Ecol Prog Ser 412:69–84. https://doi.org/10.3354/meps08666

    Article  CAS  Google Scholar 

  • Maslanik JA, Fowler C, Stroeve J, Drobot S, Zwally J, Yi D, Emery W (2007) A younger, thinner Arctic ice cover: increased potential for rapid, extensive sea-ice loss. Geophys Res Lett. https://doi.org/10.1029/2007GL032043

    Article  Google Scholar 

  • Matthiessen J, Vernal A, Head M, Okolodkov Y, Angel P, Zonneveld K, Harland R (2005) Modern organic-walled dinoflagellates cysts in Arctic marine environments and their (paleo-) environmental significance. Paläontol Z 79(1):3–51. https://doi.org/10.1007/BF03021752

    Article  Google Scholar 

  • Medlin LK, Priddle J (1990) Polar marine diatoms. British Antarctic Survey, Cambridge

    Google Scholar 

  • Menden-Deuer S, Lessard EJ (2000) Carbon to volume relationships for dinoflagellates, diatoms and other protist plankton. Limnol Oceanogr 45(3):569–579. https://doi.org/10.4319/lo.2000.45.3.0569

    Article  CAS  Google Scholar 

  • Nikiforov EG, Speicher AO (1980) Regularity of formation of large-scale oscillations of hydrological regime of Arctic Ocean. Leningrad (in Russian)

  • Okolodkov YB (1991) Ice algae of the Laptev Sea in May, 1988 and 1989. Novitates Systematicae Plantarum non Vascularium 28:29–34

    Google Scholar 

  • Okolodkov YB (1992) Cryopelagic flora of the Chukchi, East Siberian and Laptev Seas. Polar Biol 5:28–43

    Google Scholar 

  • Okolodkov YB (1999) Species range types of recent marine dinoflagellates recorded from the arctic. Grana 38(2–3):162–169. https://doi.org/10.1080/00173139908559224

    Article  Google Scholar 

  • Okolodkov YB (2000) Dinoflagellates (Dinophyceae) of the Eurasian Arctic Seas. Dissertation, Komarov Botanical Institute, Russian Academy of Sciences (in Russian)

  • Okolodkov YB (2005) The global distributional patterns of toxic, bloom dinoflagellates recorded from the Eurasian Arctic. Harmful Algae 4:351–369. https://doi.org/10.1016/j.hal.2004.06.016

    Article  Google Scholar 

  • Okolodkov YB, Dodge JD (1996) Biodiversity and biogeography of planktonic dinoflagellates in the Arctic Ocean. J Exp Mar Biol Ecol 202:19–27. https://doi.org/10.1016/0022-0981(96)00028-7

    Article  Google Scholar 

  • Oradovskiy SG (1993) Marine water analysis. Hydrometeoizdat, St. Petersburg (in Russian)

    Google Scholar 

  • Pankow H (1990) Ostsee algenflora. Fisher, Jena

    Google Scholar 

  • Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon Press, Oxford

    Google Scholar 

  • Peters J, Tuschling K, Brandt A (2004) Zooplankton in the arctic Laptev Sea–feeding ecology as indicated by fatty acid composition. J Plankton Res 26(2):227–234. https://doi.org/10.1093/plankt/fbh017

    Article  CAS  Google Scholar 

  • Pivovarov S, Hölemann J, Kassens H, Antonow M, Dmitrenko I (1999) Dissolved oxygen, silicon, phosphorus and suspended matter concentrations during the spring breakup of the Lena River. In: Kassens H, Bauch HA, Dmitrenko I, Eicken H, Hubberten HW, Melles M, Tiede J, Timokhov L (eds) Land-and-ocean systems in the Siberian Arctic: dynamics and history. Springer-Verlag, Berlin, pp 251–264

    Chapter  Google Scholar 

  • Polyakova YI (1988) Diatoms of Arctic seas of the USSR and their significance in the study of bottom sediments. Oceanology 28:221–225

    Google Scholar 

  • Polyakova YI (1997) The Eurasian Arctic seas during the late cenozoic. Scientific World, Moscow (in Russian)

    Google Scholar 

  • Polyakova YI (2003) Diatom assemblages in surface sediments of the Kara Sea (Siberian Arctic) and their relationship to oceanological conditions. In: Stein R, Fahl K, Fütterer DK, Galimov EM, Stepanets OV (eds) Siberian river run-off in the Kara Sea: characterization, quantification, variability, and environmental significance. Proceedings in Marine Science. Elsevier, Amsterdam, pp 375–399

    Google Scholar 

  • Polyakova YI, Novichkova YA (2018) Diatoms and aquatic palynomorphs in the White sea sediments as indicators of sedimentation processes and paleoceanography. In: Lisitzin AP, Demina LL (eds) Sedimentation processes in the White Sea: the White Sea environment. Hdb environmental chemistry, vol 2. Springer, New York, pp 10–48

    Google Scholar 

  • Poulin M, Daugbjerg N, Gradinger R, Ilyash L, Ratkova T, Quillfeldt C (2011) The pan-Arctic biodiversity of marine pelagic and sea-ice unicellular eukaryotes: a first-attempt assessment. Mar Biodivers 41:13–28. https://doi.org/10.1007/s12526-010-0058-8

    Article  Google Scholar 

  • Reynolds CS (1983) A physiological interpretation of the dynamic responses of populations of a planktonic diatom to physical variability of the environment. New Phytol 95(1):41–53. https://doi.org/10.1111/j.1469-8137.1983.tb03467.x

    Article  Google Scholar 

  • Sakshaug E, Slagstad D (1991) Light and productivity of phytoplankton in polar marine ecosystems: a physiological view. Polar Res 10(1):69–85. https://doi.org/10.3402/polar.v10i1.6729

    Article  Google Scholar 

  • Savel’eva NI, Pipko II, Pugach SP, Semiletov IP (2008) Hydrochemical characteristics of coastal waters of the East Siberian Sea. Bulletin of the Far Eastern Branch of the Russian Academy of Sciences (in Russian)

  • Semina HJ (1997) An outline of the geographical distribution of oceanic phytoplankton. In: Blaxter GHS, Southward AG, Gebruk AV, Southward EC, Tyler PA (eds) Advances in marine biology 32. Academic Press, San Diego, pp 527–563

    Google Scholar 

  • Shirshov PP (1937) Seasonal events in the plankton life in the Polar seas in dependence on the ice regime. Trudy Arkticheskogo Instituta 82:47–111 (in Russian)

    Google Scholar 

  • Sims PA, Hartley B, Barber HG, Carter JR (1996) An atlas of British diatoms. Biopress Ltd, Bristol

    Google Scholar 

  • Smetacek VS (1985) Role of sinking in diatom life-history cycles: ecological, evolutionary and geological significance. Mar Biol 84:239–251. https://doi.org/10.1007/BF00392493

    Article  Google Scholar 

  • Smetacek VS (1986) Impact of freshwater discharge on production and transfer of materials in the marine environment. In: Skreslet S (ed) The role of freshwater outflow in coastal marine ecosystems. NATO ASI Series (Series G: Ecological Sciences), vol 7. Springer, Heidelberg, pp 85–106

    Chapter  Google Scholar 

  • Sorokin YI, Sorokin PY (1996) Plankton and primary production in the Lena River estuary and in the south-eastern Laptev Sea. Estuar Coast Shelf Sci 43:399–418. https://doi.org/10.1006/ecss.1996.0078

    Article  CAS  Google Scholar 

  • Sournia A (1978) Phytoplankton manual. UNESCO, Paris

    Google Scholar 

  • Sugie K, Kuma K (2008) Resting spore formation in the marine diatom Thalassiosira nordenskioeldii under iron- and nitrogen-limited conditions. J Plankton Res 30(11):1245–1255. https://doi.org/10.1093/plankt/fbn080

    Article  CAS  Google Scholar 

  • Sukhanova IN, Flint MV, Sergeeva VM (2012) Phytoplankton of the surface desalted lens of the Kara Sea. Oceanology 52(5):635–645. https://doi.org/10.1134/S0001437012050165

    Article  Google Scholar 

  • Sukhanova IN, Flint MV, Georgieva EJu, Lange EK, Kravchishina MD, Demidov AB, Nedospasov AA, Polukhin AA (2017) Structure of phytoplankton communities in the eastern part of the Laptev Sea. Oceanology 57(1):86–102. https://doi.org/10.1134/S0001437017010209

    Article  Google Scholar 

  • Timokhov LA (1994) Regional characteristics of the Laptev and the East Siberian seas: climate, topography, ice phases, thermohaline regime, and circulation. In: Kassens H, Hubberten HW, Pryamikov SM, Stein R (eds) Russian-German cooperation in the Siberian Shelf Seas: geo-system Laptev Sea. Reports on Polar Research 144:15–31

  • Tomas CR, Hasle GR, Syversten EE, Steidinger KA, Tangen K (1997) Identifying marine phytoplankton. Academic Press Inc, San-Diego

    Google Scholar 

  • Trigueros JM, Orive E (2001) Seasonal variations of diatoms and dinoflagellates in a shallow, temperate estuary, with emphasis on neritic assemblages. Hydrobiologia 444:119–133. https://doi.org/10.1023/A:1017563031810

    Article  Google Scholar 

  • Tuschling K, Juterzenka K, Okolodkov YB, Anoshkin A (2000) Composition and distribution of the pelagic and sympagic algal assemblages in the Laptev Sea during autumnal freeze-up. J Plankton Res 22(5):843–864. https://doi.org/10.1093/plankt/22.5.843

    Article  Google Scholar 

  • Vetrov AA, Romankevich EA (2008) Interannual variability of the primary production and organic carbon fluxes in the Arctic seas of Russia. Oceanology 48(3):340–348. https://doi.org/10.1134/S0001437008030053

    Article  Google Scholar 

  • Vetrov AA, Romankevich EA (2011) Primary production and fluxes of organic carbon to the seabed in the Russian Arctic seas as a response to the recent warming. Oceanology 51(2):255–256. https://doi.org/10.1134/S0001437011020196

    Article  Google Scholar 

  • Vetrov AA, Romankevich EA, Belyaev NA (2008) Chlorophyll, primary production, fluxes, and balance of organic carbon in the Laptev Sea. Geochem Int 46(10):1055–1063. https://doi.org/10.1134/S0016702908100091

    Article  Google Scholar 

  • Walsh JE (2014) Intensified warming of the Arctic: causes and impacts on middle latitudes. Global Planet Change 117:52–63. https://doi.org/10.1016/j.gloplacha.2014.03.003

    Article  Google Scholar 

  • Wang J, Cota GF, Comiso JC (2005) Phytoplankton in the Beaufort and Chukchi Seas: distribution, dynamics, and environmental forcing. Deep Sea Res II 52:3355–3368. https://doi.org/10.1016/j.dsr2.2005.10.014

    Article  Google Scholar 

  • Wassmann P, Peinert R, Smetacek V (1991) Patterns of production and sedimentation in the boreal and polar Northeast Atlantic. Polar Res 10(1):209–228. https://doi.org/10.3402/polar.v10i1.6740

    Article  Google Scholar 

  • Wassmann P, Slagstad D, Ellingsen I (2010) Primary production and climatic variability in the European sector of the Arctic Ocean prior to 2007: preliminary results. Polar Biol 33:1641–1650. https://doi.org/10.1007/s00300-010-0839-3

    Article  Google Scholar 

  • Witkowski A, Lange-Bertalot H, Metzeltin D (2000) Diatom flora of marine coasts I iconographia diatomologica 7. Königstein, Germany

    Google Scholar 

  • Zernova VV, Nöthig EM, Shevchenko VP (2000) Vertical microalga flux in the northern Laptev Sea (from the data collected by the yearlong sediment trap). Oceanology 40(6):801–808

    Google Scholar 

  • Zheng S, Jianfeng H, Guizhong W, Shaojing L (2005) Abundance, biomass and composition of spring ice algal and phytoplankton communities of the Laptev Sea (Arctic). Chin J Polar Sci 16(2):70–80

    Google Scholar 

  • Zvalinsky VI, Nedashkovsky AP, Segalayev SG, Tishchenko PJ, Shvetsova MG (2005) Nutrients and primary production in the estuary of the Razdol’naya River (Amur Bay, Sea of Japan). Russ J Mar Biol 31:91–101. https://doi.org/10.1007/s11179-005-0049-y

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the scientists and ship crew for their support during the expedition. We thank Dr. P.B. Hamilton and anonymous reviewers for their valuable comments on an earlier draft of this manuscript. We also thank Prof. Dr. Dieter Piepenburg for detailed comments, which were very helpful in improving the manuscript.

Funding

This work was carried out as part of the German‐Russian cooperation “Laptev Sea System,” funded by German Federal Ministry of Education and Research (Grant BMBF 03G0833) and the Ministry of Education and Science of the Russian Federation. This research was carried out in the framework of the State Assignment of Ministry of Science and High Education, Russia (Theme No. 0149-2019-0007 and “Paleogeographic reconstructions of natural geosystems and forecasting of their changes”).

Author information

Authors and Affiliations

Authors

Contributions

YP and IK analyzed phytoplankton samples and prepared the manuscript, FM and EA conducted the fieldwork, AN provided chemical data, JH provided CDT data, and HK organized expedition. All authors provided comments on the manuscript.

Corresponding author

Correspondence to Ye. I. Polyakova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polyakova, Y.I., Kryukova, I.M., Martynov, F.M. et al. Community structure and spatial distribution of phytoplankton in relation to hydrography in the Laptev Sea and the East Siberian Sea (autumn 2008). Polar Biol 44, 1229–1250 (2021). https://doi.org/10.1007/s00300-021-02873-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-021-02873-w

Keywords

Navigation