Skip to main content

Mercury contamination of seabird and sea duck eggs from high Arctic Greenland

Abstract

Mercury (Hg) levels in the environment have substantially increased over the past century leading to increased concentrations in many high trophic level predators, including Arctic seabirds. From the Canadian high Arctic, research on seabird eggs has documented some of the greatest concentrations of egg Hg anywhere in the Arctic. Farther east, in high Arctic Greenland, no similar data on Hg concentrations in eggs exist, making spatial comparisons unfeasible. To address this paucity of data, we collected whole eggs from Thick-billed Murre Uria lomvia (n = 11), Black-legged Kittiwake Rissa tridactyla (n = 9), and Common Eider Somateria mollissima (n = 12) in the high Arctic of northwest Greenland in the summer of 2014 and assessed their concentration of total Hg. Thick-billed Murre eggs had the highest mean total Hg concentrations (1.32  ±  0.42 mg g−1 dw) followed by kittiwakes (0.64  ±  0.19) and eiders (0.23  ±  0.10). When compared with murre and kittiwake egg samples collected in high Arctic Canada during the same time period, total Hg concentrations from northwest Greenland were higher, but not significantly. Based on what is known about lethal Hg concentrations in murre eggs, these results indicate that some murre eggs may be at risk for increased embryonic mortality and further monitoring is suggested to determine long-term trends in egg Hg concentrations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Data availability

All data are available from the corresponding author and are archived by the High Arctic Institute.

References

  1. Ackerman JT, Eagles-Smith CA, Herzog MP, Hartman CA, Peterson SH, Evers DC, Jackson AK et al (2016a) Avian mercury exposure and toxicological risk across western North America: a synthesis. Sci Tot Environ 568:749–769. https://doi.org/10.1016/j.scitotenv.2016.03.071

    CAS  Article  Google Scholar 

  2. Ackerman JT, Eagles-Smith CA, Herzog MP, Yee JL, Hartman CL (2016b) Egg-laying sequence influences egg mercury concentration and egg size in three bird species: implication for contaminant monitoring programs. Environ Tox Chem 35:1458–1469. https://doi.org/10.1002/etc.3291

    CAS  Article  Google Scholar 

  3. Ackerman JT, Herzog MP, Evers DC, Cristol DA, Kenow KP, Heinz GH, Lavoie RA et al (2020) Synthesis of maternal transfer of mercury in birds: implication for altered toxicity risk. Environ Sci Technol 54:2878–2891. https://doi.org/10.1021/acs.est.9b06119

    CAS  Article  PubMed  Google Scholar 

  4. Ackerman JT, Herzog MP, Schwarzbach SE (2013) Methylmercury is the predominant form of mercury in bird eggs: a synthesis. Environ Sci Technol 47:2052–2060. https://doi.org/10.1021/es304385y

    CAS  Article  PubMed  Google Scholar 

  5. Akearok JA, Hebert CE, Braune BM, Mallory ML (2010) Inter- and intraclutch variation in egg mercury levels in marine bird species from the Canadian Arctic. Sci Tot Environ 408:836–840. https://doi.org/10.1016/j.scitotenv.2009.11.039

    CAS  Article  Google Scholar 

  6. Albert C, Helgason HH, Brault-Favrou M, Robertson GJ, Descamps S, Amélineau F, Danielsen J et al (2020) Seasonal variation of mercury contamination in Arctic seabirds: a pan-Arctic assessment. Sci Tot Environ 750:142201. https://doi.org/10.1016/j.scitotenv.2020.142201

    CAS  Article  Google Scholar 

  7. Albert C, Renedo M, Bustamante P, Fort J (2019) Using blood and feathers to investigate large-scale Hg contamination in Arctic seabirds: a review. Environ Res 177:108588. https://doi.org/10.1016/j.envres.2019.108588

    CAS  Article  PubMed  Google Scholar 

  8. AMAP (2011) AMAP assessment 2011: mercury in the Arctic. Monitoring and Assessment Programme (AMAP), Oslo, Norway

    Google Scholar 

  9. AMAP (2018) AMAP assessment 2018: biological effects of contaminants on Arctic wildlife and Fish. Arctic Monitoring and Assessment Programme (AMAP), Tromsø, Norway

    Google Scholar 

  10. AMAP (2019). Technical background report for the global mercury assessment 2018. Arctic Monitoring and Assessment Programme (AMAP). Oslo, Norway

  11. Amos HM, Sonke JE, Obrist D, Robins N, Hagan N, Horowitz HM, Mason RP et al (2015) Observational and modeling constraints on global anthropogenic enrichment of mercury. Environ Sci Technol 49:4036–4047. https://doi.org/10.1021/es5058665

    CAS  Article  PubMed  Google Scholar 

  12. Atwell L, Hobson KA, Welch HE (1998) Biomagnification and bioaccumulation of mercury in an Arctic marine food web: insights from stable nitrogen isotope analysis. Can J Fish Aquat Sci 55:1114–1121. https://doi.org/10.1139/f98-001

    CAS  Article  Google Scholar 

  13. Barrett RT, Skaare JU, Gabrielsen GW (1996) Recent changes in levels of persistent organochlorines and mercury in eggs of seabirds from the Barents Sea. Environ Pollut 92:13–18. https://doi.org/10.1016/0269-7491(95)00091-7

    CAS  Article  PubMed  Google Scholar 

  14. Becker PH (2003) Chapter 19 biomonitoring with birds. In: Markert BA, Breure AM, Zechmeister HG (eds) Trace metals and other contaminants in the environment. Elsevier, Oxford, pp 677–736

    Google Scholar 

  15. Boertmann DA, Mosbech A, Falk K, Kampp K (1996) Seabird colonies in western Greenland (60°–79°30’ N. lat). NERI Technical Report No. 170. National Environmental Research Institute. Copenhagen, Denmark

  16. Bond AL, Hobson KA, Branfireun BA (2015) Rapidly increasing methyl mercury in endangered Ivory Gull (Pagophila eburnea) feathers over a 130 year record. Proc R Soc Lond B 282:20150032. https://doi.org/10.1098/rspb.2015.0032

    Article  Google Scholar 

  17. Braune BM (2007) Temporal trends of organochlorines and mercury in seabird eggs from the Canadian Arctic, 1975–2003. Environ Pollut 148:599–613. https://doi.org/10.1016/j.envpol.2006.11.024

    CAS  Article  PubMed  Google Scholar 

  18. Braune B, Chételat J, Amyot M, Brown T, Clayden M, Evans M, Fisk A et al (2015) Mercury in the marine environment of the Canadian Arctic: review of recent findings. Sci Tot Environ 509–510:67–90. https://doi.org/10.1016/j.scitotenv.2014.05.133

    CAS  Article  Google Scholar 

  19. Braune BM, Donaldson GM, Hobson KA (2002) Contaminant residues in seabird eggs from the Canadian Arctic. II. Spatial trends and evidence from stable isotopes for intercolony differences. Environ Pollut 117:133–145. https://doi.org/10.1016/S0269-7491(01)00186-5

    CAS  Article  PubMed  Google Scholar 

  20. Braune BM, Gaston AJ, Gilchrist HG, Mallory ML, Provencher JF (2014) A geographical comparison of mercury in seabirds in the eastern Canadian Arctic. Environ Int 66:92–96. https://doi.org/10.1016/j.envint.2014.01.027

    CAS  Article  PubMed  Google Scholar 

  21. Braune BM, Gaston AJ, Mallory ML (2016) Temporal trends of mercury in eggs of five sympatrically breeding seabird species in the Canadian Arctic. Environ Pollut 214:124–131. https://doi.org/10.1016/j.envpol.2016.04.006

    CAS  Article  PubMed  Google Scholar 

  22. Braune BM, Hobson KA, Malone BJ (2005) Regional differences in collagen stable isotope and tissue trace element profiles in populations of Long-tailed Duck breeding in the Canadian Arctic. Sci Tot Environ 346:156–168. https://doi.org/10.1016/j.scitotenv.2004.12.017

    CAS  Article  Google Scholar 

  23. Braune BM, Scheuhammer AM, Crump D, Jones S, Porter E, Bond D (2012) Toxicity of methylmercury injected into eggs of Thick-billed Murres and Arctic Terns. Ecotoxicol 21:2143–2152. https://doi.org/10.1007/s10646-012-0967-3

    CAS  Article  Google Scholar 

  24. Burnham JL, Burnham KK, Chumchal MM, Welker JM, Johnson JA (2018) Correspondence between mercury and stable isotopes in high Arctic marine and terrestrial avian species from northwest Greenland. Polar Biol 41:1475–1491. https://doi.org/10.1007/s00300-018-2302-9

    Article  Google Scholar 

  25. Burnham KK, Johnson JA, Konkel B, Burnham JL (2012) Nesting Common Eider (Somateria mollissima) population quintuples in northwest Greenland. Arct 65:456–464. https://doi.org/10.14430/arctic4243

    Article  Google Scholar 

  26. CAFF (2010) Arctic biodiversity trends 2010 – select indicators of change. CAFF International Secretariat, Akureyri, Iceland

    Google Scholar 

  27. Campbell LM, Norstrom RJ, Hobson KA, Muir DCG, Backus S, Fish AT (2005) Mercury and other trace elements in a pelagic Arctic marine food web (Northwater Polynya, Baffin Bay). Sci Tot Environ 351–352:247–263. https://doi.org/10.1016/j.scitotenv.2005.02.043

    CAS  Article  Google Scholar 

  28. Chen CY, Borsuk ME, Bugge DM, Hollweg T, Balcom PH, Ward DM, Williams J et al (2014) Benthic and pelagic pathways of methylmercury bioaccumulation in estuarine food webs of the northeast United States. PLoS ONE 9:e89305. https://doi.org/10.1371/journal.pone.0089305

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Chételat J, Ackerman JT, Eagles-Smith CA, Hebert CE (2020) Methylmercury exposure in wildlife: a review of the ecological and physiological processes affecting contaminant concentrations and their interpretation. Sci Tot Environ 711:135117. https://doi.org/10.1016/j.scitotenv.2019.135117

    CAS  Article  Google Scholar 

  30. Dietz R, Born EW, Rigét F, Aubail A, Sonne C, Drimmie R, Base N (2011) Temporal trends and future prediction of mercury concentrations in northwest Greenland polar bear (Ursus maritimus) hair. Environ Sci Technol 45:1458–1465. https://doi.org/10.1021/es1028734

    CAS  Article  PubMed  Google Scholar 

  31. Dietz R, Letcher RJ, Desforges JP, Eulaers I, Sonne C, Wilson S, Andersen-Ranberg E et al (2019) Current state of knowledge on biological effects from contaminants on arctic wildlife and fish. Sci Tot Environ 696:133792. https://doi.org/10.1016/j.scitotenv.2019.133792

    CAS  Article  Google Scholar 

  32. Dietz R, Outridge PM, Hobson KA (2009) Anthropogenic contributions to mercury levels in present-day Arctic animals – a review. Sci Tot Environ 407:6120–6131. https://doi.org/10.1016/j.scitotenv.2009.08.036

    CAS  Article  Google Scholar 

  33. Dietz R, Rigét FF, Boertmann D, Sonne C, Olsen MT, Fjeldså J, Falk K et al (2006) Time trends of mercury in feathers of West Greenland birds of prey 1851–2003. Environ Sci Technol 40:5911–5916. https://doi.org/10.1021/es0609856

    CAS  Article  PubMed  Google Scholar 

  34. Dietz R, Rigét F, Born EW (2000) An assessment of selenium to mercury in Greenland marine animals. Sci Tot Environ 245:15–24. https://doi.org/10.1016/S0048-9697(99)00430-1

    CAS  Article  Google Scholar 

  35. Dietz R, Rigét F, Johansen P (1996) Lead, cadmium, mercury and selenium in Greenland marine animals. Sci Tot Environ 186:69–93. https://doi.org/10.1016/0048-9697(96)05086-3

    Article  Google Scholar 

  36. Dietz R, Sonne C, Basu N, Braune B, O’Hara T, Letcher RJ, Scheuhammer T et al (2013) What are the toxicological effects of mercury in biota? Sci Total Environ 443:775–790. https://doi.org/10.1016/j.scitotenv.2012.11.046

    CAS  Article  PubMed  Google Scholar 

  37. Evers D (2018) The effects of methylmercury on wildlife: a comprehensive review and approach for interpretation. In: DellaSalla DA, Goldstein MI (eds) The encyclopedia of the Anthropocene, vol 5. Elsevier, Oxford, pp 181–194

    Chapter  Google Scholar 

  38. Gaston AJ, Hipfner JM (2020) Thick-billed Murre (Uria lomvia), version 1.0. In: Billerman SM (ed) Birds of the world. Cornell Lab of Ornithology, Ithica, NY. https://doi.org/10.2173/bow.thbmur.01

    Chapter  Google Scholar 

  39. Goudie RI, Robertson GJ, Reed A (2020) Common Eider (Somateria mollissima), version 1.0. In: Billerman SM (ed) Birds of the world. Cornell Lab of Ornithology, Ithaca, NY. https://doi.org/10.2173/bow.comeid.01

    Chapter  Google Scholar 

  40. Goutte A, Barbraud C, Herzke D, Bustamante P, Angelier F, Tartu S, Clément-Chastel C et al (2015) Survival rate and breeding outputs in a high Arctic seabird exposed to legacy persistent organic pollutants and mercury. Envron Pollut 200:1–9. https://doi.org/10.1016/j.envpol.2015.01.033

    CAS  Article  Google Scholar 

  41. Hansen CT, Overgaard C, Dietz R, Hansen MM (1990) Zinc, cadmium, mercury, and selenium in minke whales, belugas and narwhals from West Greenland. Polar Biol 10:529–539. https://doi.org/10.1007/BF00233702

    Article  Google Scholar 

  42. Hatch SA, Roberstson GJ, Baird PH (2020) Black-legged Kittiwake (Rissa tridactyla), version 1.0. In: Billerman SM (ed) Birds of the world. Cornell Lab of Ornithology, Ithaca, NY. https://doi.org/10.2173/bow.bklkit.01

    Chapter  Google Scholar 

  43. Hill EJ (2018) Exposure of the Common Eider (Somateria mollissima) to toxic elements in relation to migration strategy and wintering area. Master’s Thesis. Norwegian University of Science and Technology.

  44. Jaeger I, Hop H, Gabrielsen GW (2009) Biomagnification of mercury in selected species from an Arctic marine food web in Svalbard. Sci Tot Environ 407:4744–4751. https://doi.org/10.1016/j.scitotenv.2016.02.205

    CAS  Article  Google Scholar 

  45. Mallory CD, Gilchrist HG, Robertson GJ, Provencher JF, Braune BM, Forbes MR, Mallory ML (2017) Hepatic trace element concentrations of breeding female Common Eiders across a latitudinal gradient in the eastern Canadian Arctic. Mar Pollut Bull 124:252–257. https://doi.org/10.1016/j.marpolbul.2017.07.050

    CAS  Article  PubMed  Google Scholar 

  46. Mallory ML, Braune BM (2018) Do concentration in eggs and liver tissue tell the same story of temporal trends of mercury in high Arctic seabirds? J Environ Sci 68:65–72. https://doi.org/10.1016/j.jes.2017.10.017

    Article  Google Scholar 

  47. Mallory ML, Braune BM, Wayland M, Gilchrist HG, Dickson DL (2004) Contaminants in Common Eiders (Somateria mollissima) of the Canadian Arctic. Environ Rev 12:197–218. https://doi.org/10.1139/a05-004

    CAS  Article  Google Scholar 

  48. Mallory ML, Braune BM (2012) Tracking contaminants in seabirds of Arctic Canada: temporal and spatial insights. Mar Pollut Bull 64:1475–1484. https://doi.org/10.1016/j.marpolbul.2012.05.012

    CAS  Article  PubMed  Google Scholar 

  49. Miljeteig C, Gabrielsen GW (2009) Contamimants in Black-legged Kittiwake eggs from Kongsfjorden, Barentsburg and Pyramiden. Brief Report Series nr. 14. Norwegian Polar Institute, Tromsø, Norway

  50. Miljeteig C, Gabrielsen GW (2010) Contaminants in Brünnich’s Guillemots from Kongsfjorden and Bjørnøya in the period from 1993 to 2007. Brief Report Series nr. 16. Norwegian Polar Institute, Tromsø, Norway

  51. Nielsen CO, Dietz R (1989) Heavy metals in Greenland seabirds. Monogr Greenl 29:1–26

    Google Scholar 

  52. Peck LE, Gilchrist HG, Mallory CD, Braune BM, Mallory ML (2016) Persistent organic pollutant and mercury concentrations in eggs of ground-nesting marine birds in the Canadian high Arctic. Sci Tot Environ 556:80–88. https://doi.org/10.1016/j.scitotenv.2016.02.205

    CAS  Article  Google Scholar 

  53. Provencher JF, Forbes MR, Hennin HL, Love OP, Braune BM, Mallory ML, Gilchrist HG (2016) Implications of mercury and lead concentration on breeding physiology and phenology in an Arctic bird. Environ Pollution 218:1014–1022. https://doi.org/10.1016/j.envpol.2016.08.052

    CAS  Article  Google Scholar 

  54. Rigét F, Dietz R (2000) Temporal trends of cadmium and mercury in Greenland marine biota. Sci Tot Environ 245:49–60. https://doi.org/10.1016/S0048-9697(99)00432-5

    Article  Google Scholar 

  55. Rigét F, Dietz R, Born EW, Sonne C, Hobson KA (2007) Temporal trends of mercury in marine biota of west and northwest Greenland. Mar Pollut Bull 54:72–80. https://doi.org/10.1016/j.marpolbul.2006.08.046

    CAS  Article  PubMed  Google Scholar 

  56. Rigét F, Dietz R, Hobson KA (2012) Temporal trends of mercury in Greenland ringed seal population in a warming climate. J Environ Monit 12:3249–3256. https://doi.org/10.1039/C2EM30687E

    Article  Google Scholar 

  57. Schroeder WH, Munthe J (1998) Atmospheric mercury – an overview. Atmos Environ 32:809–822. https://doi.org/10.1016/S1352-2310(97)00293-8

    CAS  Article  Google Scholar 

  58. Scheuhammer A, Braune B, Chan HM, Frouin H, Krey A, Letcher R, Loseto L et al (2015) Recent progress on our understanding of the biological effects of mercury in fish and wildlife in the Canadian Arctic. Sci Total Environ 509–510:91–103. https://doi.org/10.1016/j.scitotenv.2014.05.142

    CAS  Article  PubMed  Google Scholar 

  59. Sonne C (2010) Health effects from long-range transported contaminants in Arctic top predators: an integrated review based on studies of polar bears and relevant model species. Environ Int 36:461–491. https://doi.org/10.1016/j.envint.2010.03.002

    CAS  Article  PubMed  Google Scholar 

  60. Tartu S, Bustamante P, Angelier F, Lendvai AZ, Moe B, Blévin P, Bech C et al (2016) Mercury exposure, stress and prolactin secretion in an Arctic seabird; an experimental study. Funct Ecol 30:596–604. https://doi.org/10.1111/1365-2435.12534

    Article  Google Scholar 

  61. Tartu S, Goutte A, Bustamante P, Angelier F, Moe B, Clément-Chastel C, Bech C et al (2013) To breed or not to breed: endocrine response to mercury contamination by an Arctic seabird. Biol Lett 9:20130317. https://doi.org/10.1098/rsbl.2013.0317

    Article  PubMed  PubMed Central  Google Scholar 

  62. Whitney MC, Cristol DA (2017) Impacts of sublethal mercury exposure on birds: a detailed review. In: de Voogt P (ed) Reviews of environmental contamination and toxicology (Continuation of Residue Reviews). Springer, Cham. https://doi.org/10.1007/398_2017_4

    Chapter  Google Scholar 

  63. Wiener JG, Krabbenhonhoft DP, Heinz GH, Scheuhammer AM (2003) Ecotoxicology of mercury. In: Hoffman DJ, Rattner BA, BurtonCairns GAJ (eds) Handbook of ecotoxicology, 2nd edn. CRC Press, Boca Raton, Florida, pp 409–463

    Google Scholar 

Download references

Acknowledgements

The authors thank Bridger Konkel for assistance collecting samples. Further, they thank the Greenland Home Rule Government for providing permits to work in Greenland and the U.S. Air Force for providing access to Thule Air Base. The authors are indebted to Polar Field Services, specifically Jessy Jenkins and Kim Derry, the 109th Air National Guard, the US National Science Foundation, the US Bureau of Land Management, and Greenland Contractors for their assistance with logistical support. They extend additional thanks to Calen Offield and the Offield Family Foundation, the Wolf Creek Charitable Trust, Patagonia, Augustana College, and many others who have donated to the High Arctic Institute for providing financial support for this research. They extend special thanks to the residents of Thule Air Base for their long-standing support of all of their research projects in northwest Greenland. They thank Jennifer Provencher and Mandy Keogh for providing helpful feedback and revisions to this manuscript.

Funding

Funding was provided by Offield Family Foundation, Wolf Creek Charitable Trust, Patagonia, and Augustana College.

Author information

Affiliations

Authors

Contributions

KB, JB, and FM designed the research. KB, JB, FM, and JJ collected and prepped samples in the field, and MC conducted the mercury analysis. All the authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to K. K. Burnham.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

Ethical approval

All standard procedures and protocols were followed, and appropriate permits were received from the Greenland Home Rule Government and other permitting agencies, as required.

Consent to participate

All the authors provide their consent to participate.

Consent for publication

All the authors provide their consent for this manuscript to be submitted to Polar Biology.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Burnham, K.K., Meyer, F.K., Burnham, J.L. et al. Mercury contamination of seabird and sea duck eggs from high Arctic Greenland. Polar Biol 44, 1195–1202 (2021). https://doi.org/10.1007/s00300-021-02864-x

Download citation

Keywords

  • Mercury
  • Northwest Greenland
  • Thick-billed Murre
  • Common Eider
  • Black-legged Kittiwake
  • Egg