Skip to main content

Responses of nesting Arctic terns (Sterna paradisaea) to disturbance by humans

Abstract

Nesting birds often respond to human disturbance as to a predatory act. In the case of the high Arctic, the disturbance of incubating birds may bring further complications due to egg cooling. In addition, it is assumed that birds in the high Arctic are not shy and do not respond to human presence fearfully. We tested how quickly the Arctic terns (Sterna paradisaea) nesting in two colonies in Svalbard return to the nest after human disturbance. One colony was situated inside a town where the terns were regularly harassed by human presence. The second colony was on a glacial foreland where breeding terns have limited experience with humans. We found that terns without frequent experience with humans returned to the nest about 5 min after disturbance, while urban terns habituated to human presence returned within a few tens of seconds. The urban terns in this way likely solve the risk of spending too much time off the nest, which could lead under the conditions of the high Arctic to the stopping of embryogenesis. Terns from a remote colony do not show lower hatching success of their eggs than the urban ones, however, incubation and the whole population of terns could be threatened when there is more frequent disturbance by researchers or tourists.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Abolins-Abols M, Ketterson ED (2017) Condition explains individual variation in mobbing behavior. Ethology 123:495–502

    Article  Google Scholar 

  • Albrecht T, Klvaňa P (2004) Nest crypsis, reproductive value of a clutch and escape decisions in incubating female mallards Anas platyrhynchos. Ethology 110:603–613

    Article  Google Scholar 

  • Ambrožová K, Láska K (2017) Air temperature variability in the vertical profile over the coastal area of Petuniabukta, central Spitsbergen. Pol Polar Res 38:41–60

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  • Beale CM, Monaghan P (2004) Human disturbance: people as predation-free predators? J Appl Ecol 41:335–343

    Article  Google Scholar 

  • Becker PH (1984) Wie richtet eine Flußseeschwalbenkolonie (Sterna hirundo) ihr Abwehrverhalten auf den Feinddruck durch Silbermöwen (Larus argentatus) ein? Ethology 66:265–288

    Google Scholar 

  • BirdLife International (2018) Sterna paradisaea. The IUCN Red List of Threatened Species 2018:e.T22694629A132065195. https://dx.doi.org/10.2305/IUCN.UK.2018-2.RLTS.T22694629A132065195.en. Downloaded on 23 January 2020

  • Blumstein DT (2003) Flight-initiation distance in birds Is dependent on intruder starting distance. J Wildl Manag 67:852–857

    Article  Google Scholar 

  • Blumstein DT, Anthony LL, Harcourt R, Ross G (2003) Testing a key assumption of wildlife buffer zones: is flight initiation distance a species-specific trait? Biol Conserv 110:97–100

    Article  Google Scholar 

  • Brunton DH (1986) Fatal antipredator behaviour of a killdeer. Wilson Bull 98:605–607

    Google Scholar 

  • Bulla M, Valcu M, Rutten AL, Kempenaers B (2014) Biparental incubation patterns in a high-Arctic breeding shorebird: how do pairs divide their duties? Behav Ecol 25:152–164

    PubMed  Article  Google Scholar 

  • Bulla M, Stich E, Valcu M, Kempenaers B (2015) Off-nest behaviour in a biparentally incubating shorebird varies with sex, time of day and weather. Ibis 157:575–589

    Article  Google Scholar 

  • Burger J, Gochfeld M (1988) Effects of group size and sex on vigilance in Ostriches (Struthio camelus): Antipredator strategy or mate competition? Ostrich 59:14–20

    Article  Google Scholar 

  • Burger J, Gochfeld M, Saliva JE, Gochfeld D, Gochfeld D, Morales H (1989) Antipredator behaviour in nesting zenaida doves (Zenaida aurita): parental investment or offspring vulnerability. Behaviour 111:129–143

    Article  Google Scholar 

  • Burger J, Gochfeld M (1991) Human distance and birds: tolerance and response distances of resident and migrant species in India. Environ Conserv 18:158–165

    Article  Google Scholar 

  • Burton PJK, Thurston MH (1957) Observations on arctic terns in Spitsbergen. British Birds L11:149–161

    Google Scholar 

  • Byrkjedal I (1989) Nest defense behavior of lesser golden-plovers. Wilson Bull 101:579–590

    Google Scholar 

  • Caro TM (2005) Antipredator defenses in birds and mammals. University of Chicago Press, Chicago

    Google Scholar 

  • Carrillo J, Aparicio JM (2001) Nest defence behaviour of the Eurasian kestrel (Falco tinnunculus) against human predators. Ethology 107:865–875

    Article  Google Scholar 

  • Clark CW (1994) Antipredator behavior and the asset-protection principle. Behav Ecol 5:159–170

    Article  Google Scholar 

  • Clode D, Birks JDS, Macdonald DW (2000) The influence of risk and vulnerability on predator mobbing by terns (Sterna spp.) and gulls (Larus spp.). J Zool 252:53–59

    Article  Google Scholar 

  • Clutton-Brock TH (1991) The evolution of parental care. Princeton Univ. Press, Princeton

    Book  Google Scholar 

  • Collias NE, Collias EC (1978) Cooperative breeding behavior in the white-browed sparrow weaver. Auk 95:472–484

    Google Scholar 

  • Cramp S (1985) Birds of the western palearctic. Oxford Univ. Press, Oxford

    Google Scholar 

  • Cresswell W, Holt S, Reid JM, Whitfield DP, Mellanby RJ (2003) Do energetic demands constrain incubation scheduling in a biparental species? Behav Ecol 14:97–102

    Article  Google Scholar 

  • Curio E, Regelmann K (1985) The behavioural dynamics of great tits (Parus major) approaching a predator. Zeitschrift für Tierpsychologie- Ethology 69:3–18

    Article  Google Scholar 

  • Curio E, Blaich R, Rieder N (1969) The functional relationship between an overt response and its underlying motivation as a basic requirement for the ethometry of sign stimuli. Zeitschrift für Vergleichende Psychologie- J Comp Physiol A 62:301–317

    Article  Google Scholar 

  • Dale S, Gustavsen R, Slagsvold T (1996) Risk taking during parental care: a test of three hypotheses applied to the pied flycatcher. Behav Ecol Sociobiol 39:31–42

    Article  Google Scholar 

  • Devlin CM, Diamond AW, Kress SW, Hall CS, Welch L (2008) Breeding dispersal and survival of Arctic tern (Sterna paradisaea) nesting in the Gulf of Main. Auk 125:850–858

    Article  Google Scholar 

  • Díaz M, Møller AP, Flensted-Jensen E, Grim T, Ibáñez-Álamo JD, Jokimäki J, Markó G, Tryjanowski P (2013) The geography of fear: a latitudinal gradient in anti-predator escape distances of birds across Europe. PLoS ONE 8:e64634

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Egevang C, Stenhouse IJ, Phillips RA, Petersen A, Fox JW, Silk JRD (2010) Tracking of Arctic terns Sterna paradisaea reveals longest animal migration. Proc Natl Acad Sci USA 107:2078–2081

    CAS  PubMed  Article  Google Scholar 

  • Fijn RC, Hiemstra D, Phillips RA, van der Winden J (2013) Arctic terns Sterna paradisaea from The Netherlands migrate record distances across three oceans to Wilkes Land, East Antarctica. Ardea 101:3–12

    Article  Google Scholar 

  • Fontaine JJ, Martin TE (2006) Parent birds assess nest predation risk and adjust their reproductive strategies. Ecol Lett 9:428–434

    CAS  PubMed  Article  Google Scholar 

  • Frederiksen M, Anker-Nilssen T, Beaugrand G, Wanless S (2013) Climate, copepods and seabirds in the boreal Northeast Atlantic-current state and future outlook. Glob Change Biol 19:364–372

    Article  Google Scholar 

  • Gilchrist HG, Robertson GJ (1999) Population trends of gulls and arctic terns nesting in the Belcher Islands, Nunavut. Arctic 52:325–331

    Article  Google Scholar 

  • Gill J, Norris K, Sutherland W (2001) Why behavioral responses may not reflect the population consequences of human disturbance. Biol Conserv 97:265–268

    Article  Google Scholar 

  • Gillett WH, Hayward JL, Stout JF (1975) Effects of human activity on egg and chick mortality in a Glaucous-winged Gull colony. Condor 77:492–495

    Article  Google Scholar 

  • Gramza AF (1967) Responses of brooding nighthawks to a disturbance stimulus. Auk 84:72–86

    Article  Google Scholar 

  • Holm TE, Laursen K (2009) Experimental disturbance by walkers affects behaviour and territory density of nesting Black-tailed Godwit Limosa limosa. Ibis 151:77–87

    Article  Google Scholar 

  • Hromádková T, Pavel V, Flousek J, Briedis M (in press) Seasonally specific responses to wind patterns and ocean productivity facilitate the longest animal migration on Earth. Mar Ecol Prog Ser

  • Jokimäki J, Huhta E (2000) Artificial nest predation and abundance of birds along an urban gradient. Condor 102:838–847

    Article  Google Scholar 

  • Jokimäki J, Kaisanlahti-Jokimäki ML, Sorace A, Fernández-Juricic E, Rodriguez-Prieto I, Jimenez MD (2005) Evaluation of the “safe nesting zone” hypothesis across an urban gradient: a multi-scale study. Ecography 28:59–70

    Article  Google Scholar 

  • Kilpi M, Lindström K, Wuorinen JD (1992) A change in clutch size in Arctic Tern Sterna paradisaea in nothern Baltic. Ornis Fenn 69:88–91

    Google Scholar 

  • King DI (1999) Mortality of an adult Veery incurred during the defense of nestlings. Wilson Bull 111:576–577

    Google Scholar 

  • Knight RL (1984) Responses of nesting ravens to people in areas of different human densities. Condor 86:345–346

    Article  Google Scholar 

  • Knight RL, Temple SA (1986) Why does intensity of avian nest defense increase during the nesting cycle? Auk 103:318–327

    Article  Google Scholar 

  • Knight RL, Grout DJ, Temple SA (1987) Nest-defense behavior of the American crow in urban and rural areas. Condor 89:175–177

    Article  Google Scholar 

  • Krams I, Bērziņš A, Krama T (2009) Group effect in nest defence behaviour of breeding pied flycatchers, Ficedula hypoleuca. Anim Behav 77:513–517

    Article  Google Scholar 

  • Krebs JR, Davies NB (1993) An introduction to behavioural ecology. Blackwell Scientific Publications, Hoboken

    Google Scholar 

  • Kruuk H (1964) Predators and anti-predator behaviour of the black-headed gull (Larus ridibundus L.). Behaviour 11:111–129

    Google Scholar 

  • Larson S (1960) On the influence of the Arctic fox (Alopex lagopus) on the distribution of arctic birds. Oikos 11:277–305

    Article  Google Scholar 

  • Leavesley AJ, Magrath RD (2005) Communicating about danger: urgency alarm calling in a bird. Anim Behav 70:365–373

    Article  Google Scholar 

  • Lemmetyinen R (1972) Growth and mortality in the chicks of Arctic terns in the Kongsfjord area, Spitsbergen in 1970. Ornis Fenn 49:45–53

    Google Scholar 

  • Lima SL (2009) Predators and the breeding bird: behavioral and reproductive flexibility under the risk of predation. Biol Rev 84:485–513

    PubMed  Article  Google Scholar 

  • López-Flores V, MacGregor-Fors I, Schondube JE (2009) Artificial nest predation along a Neotropical urban gradient. Landsc Urban Plan 92:90–95

    Article  Google Scholar 

  • Lord A, Waas JR, Innes J, Whittingham MJ (2001) Effects of human approaches to nests of northern New Zealand dotterels. Biol Conserv 98:233–240

    Article  Google Scholar 

  • Lydersen C, Assmy P, Falk-Petersen S, Kohler J, Kovacs KM, Reigstad M, Steen H, Strøm H, Sundfjord A, Varpe Ø, Walczowski W, Weslawski JM, Zajaczkowski M (2014) The importance of tidewater glaciers for marine mammals and seabirds in Svalbard, Norway. J Mar Syst 129:452–471

    Article  Google Scholar 

  • Magrath RD, Haff TM, Horn AG, Leonard ML (2010) Calling in the face of danger: predation risk and acoustic communication by parent birds and their offspring. Adv Study Behav 41:187–253

    Article  Google Scholar 

  • Martin K, Wiebe KL (2004) Coping mechanisms of alpine and arctic breeding birds: extreme weather and limitations to reproductive resilience. Integr Comp Biol 44:177–185

    PubMed  Article  Google Scholar 

  • McNamara JM, Houston AI (1986) The common currency for behavioural decisions. Am Nat 127:358–378

    Article  Google Scholar 

  • Møller AP (2008) Flight distance of urban birds, predation, and selection for urban life. Behav Ecol Sociobiol 63:63–75

    Article  Google Scholar 

  • Møller AP, Grim T, Ibáñez-Álamo JD, Markó G, Tryjanowski P (2013) Change in flight initiation distance between urban and rural habitats following a cold winter. Behav Ecol 24:1211–1217

    Article  Google Scholar 

  • Monaghan P, Uttley J, Burns M (1992) Effect of changes in food availability on reproductive effort in arctic terns Sterna paradisaea. Ardea 80:70–81

    Google Scholar 

  • Montgomerie R, Weatherhead PJ (1988) Risks and rewards of nest defence by parent birds. Q Rev Biol 63:167–187

    Article  Google Scholar 

  • Němec M, Fuchs R (2014) Nest defense of the Red-backed Shrike Lanius collurio against five corvid species. Acta Ethol 17:149–154

    Article  Google Scholar 

  • Němec M, Syrová M, Dokoupilová L, Veselý P, Šmilauer P, Landová E, Lišková S, Fuchs R (2015) Surface texture and priming play important roles in predator recognition by the red-backed shrike in field experiments. Anim Cogn 18:259–268

    PubMed  Article  Google Scholar 

  • Nordström M, Högmander J, Nummelin J, Laine J, Laanetu N, Korpimäki E (2002) Variable responses of waterfowl breeding populations to long-term removal of introduced American mink. Ecography 25:385–394

    Article  Google Scholar 

  • Norton DW (1972) Incubation schedules of four species of Calidrine sandpipers at Barrow, Alaska. Condor 74:164–176

    Article  Google Scholar 

  • Patterson TL, Petrinovich L, James DK (1980) Reproductive value and appropriateness of response to predators by white-crowned sparrows. Behav Ecol Sociobiol 7:227–231

    Article  Google Scholar 

  • Pavel V (2006) When do altricial birds reach maximum of their brood defence intensity? J Ethol 24:175–179

    Article  Google Scholar 

  • Pavel V, Bureš S (2001) Offspring age and nest defence: test of the feedback hypothesis in the meadow pipit. Anim Behav 61:297–303

    Article  Google Scholar 

  • Pavel V, Bureš S, Weidinger K, Kovařík P (2000) Distraction displays in meadow pipit (Anthus pratensis) females in Central and Northern Europe. Ethology 106:1007–1019

    Article  Google Scholar 

  • Perrins C (2003) Firefly encyclopedia of birds. Firefly Books, Buffalo

    Google Scholar 

  • Pfeiffer S, Peter HU (2004) Ecological studies toward the management of an Antarctic tourist landing site (Penguin Island, South Shetland Islands). Polar Record 40:345–353

    Article  Google Scholar 

  • Pfeiffer S, Peter HU (2006) Effects of human activities on Southern Giant Petrels and skuas in the Antarctic. J Ornithol 147:229

    Google Scholar 

  • Piatt JF, Roberts BD, Lidster WW, Wells JL, Hatch SA (1990) Effects of human disturbance on breeding least and crested auklets at St. Lawrence Island. Alaska Auk 107:342–350

    Article  Google Scholar 

  • Piersma T, Lindström Å, Drent RH, Tulp I, Jukema J, Morrison RIG, Reneerkens J, Schekkerman H, Visser GH (2003) High daily energy expenditure of incubating shorebirds on High Arctic tundra: a circumpolar study. Funct Ecol 17:356–362

    Article  Google Scholar 

  • Redondo T (1989) Avian nest defence: theoretical models and evidence. Behaviour 111:161–195

    Article  Google Scholar 

  • Redondo T, Carranza J (1989) Offspring reproductive value and the nest defense in the Magpie (Pica pica). Behav Ecol Sociobiol 25:369–378

    Article  Google Scholar 

  • Regelmann K, Curio E (1983) Determinants of brood defence in the great tit Parus major L. Behav Ecol Sociobiol 13:131–145

    Article  Google Scholar 

  • Regelmann K, Curio E (1986) Why do great tit (Parus major) males defend their brood more than females do? Anim Behav 34:1206–1214

    Article  Google Scholar 

  • Rivera-López A, MacGregor-Fors I (2016) Urban predation: a case study assessing artificial nest survival in a neotropical city. Urban Ecosyst 19:649–655

    Article  Google Scholar 

  • Roby D, Ricklef RE (1984) Observations on the cooling tolerance of embryos of the diving petrel Pelecanoides georgicus. Auk 101:160–161

    Article  Google Scholar 

  • Scheuerlein A, Van't Hof T, Gwinner E (2001) Predators as stressors? Physiological and reproductive consequences of predation risk in tropical stonechats (Saxicola torquata axillaris). Proc R Soc Lond B 268:1575–1582

    CAS  Article  Google Scholar 

  • Schreiber J, Kissling WD (2005) Factors affecting the breeding success of Arctic terns Sterna paradisaea in a colony at Kaldbaksbotnur, Faroe Islands. Atlantic Seabirds 7:97–105

    Google Scholar 

  • Shedd DH (1982) Seasonal variation and function of mobbing and related antipredator behaviors of the American Robin (Turdus migratorius). Auk 99:342–346

    Google Scholar 

  • Smith-Castro JR, Rodewald AD (2010) Behavioral responses of nesting birds to human disturbance along recreational trails. J Field Ornithol 81:130–138

    Article  Google Scholar 

  • Sordahl TA (1990) The risks of avian mobbing and distraction behavior: an anecdotal review. Wilson Bull 102:349–352

    Google Scholar 

  • Stearns SC (1992) The evolution of life histories. Oxford University Press, Oxford

    Google Scholar 

  • Strnad M, Němec M, Veselý P, Fuchs R (2012) Red-backed Shrikes (Lanius collurio) adjust the mobbing intensity, but not mobbing frequency, by assessing the potential threat to themselves from different predators. Ornis Fenn 89:206–215

    Google Scholar 

  • Strnadová I, Němec M, Strnad M, Veselý P, Fuchs R (2018) The nest defence by the red-backed shrike Lanius collurio—support for the vulnerability hypothesis. J Avian Biol 49:e01726

    Article  Google Scholar 

  • Suddaby D, Ratcliffe N (1997) The effects of fluctuating food availability on breeding arctic terns (Sterna paradisaea). Auk 114:524–530

    Article  Google Scholar 

  • Thorington KK, Bowman R (2003) Predation rate on artificial nests increases with human housing density in suburban habitats. Ecography 26:188–196

    Article  Google Scholar 

  • Tulp I, Schekkerman H, de Leeuw J (2012) Eggs in the freezer: energetic consequences of nest site and nest design in arctic breeding shorebirds. PLoS ONE 7:1–9

    Article  CAS  Google Scholar 

  • Vennesland RG (2009) Risk perception of nesting great blue herons: experimental evidence of habituation. Can J Zool 88:81–89

    Article  Google Scholar 

  • Viblanc VA, Gineste B, Robin JP, Groscolas R (2016) Breeding status affects the hormonal and metabolic response to acute stress in a long-lived seabird, the king penguin. Gen Comp Endocr 236:139–145

    CAS  PubMed  Article  Google Scholar 

  • Vigfúsdóttir F (2012) Drivers of productivity in a subarctic seabird: Arctic Terns in Iceland. Dissertation, University of East Anglia, Norwich

  • Vigfúsdóttir F, Gunnarsson TG, Gill JA (2013) Annual and between-colony variation in productivity of Arctic Terns in West Iceland. Bird Study 60:289–297

    Article  Google Scholar 

  • Viñuela J, Amat JA, Ferrer M (1995) Nest defence of nesting Chinstrap Penguins (Pygoscelis antarctica) against Intruders. Ethology 99:323–331

    Article  Google Scholar 

  • Volkov AE, Loonen MJJE, Volkova EV, Denisov DA (2017) New data for Arctic terns (Sterna paradisaea) migration from White Sea (Onega Peninsula). Ornithologia 41:58–68

    Google Scholar 

  • Webb DR (1987) Thermal tolerance of avian embryos: a review. Condor 89:874–898

    Article  Google Scholar 

  • Wiklund CG, Andersson M (1994) Natural selection of colony size in a passerine bird. J Anim Ecol 63:765–774

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Keith Edwards for English language editing and Jakub Ondruch for help with the map of study area. We also thank all referees for helpful reviews of this manuscript.

Funding

The study was supported by Grant Agency of University of South Bohemia 151/2016/P and 048/2019/P and from European Regional Development Fund-Project No. CZ.02.1.01/0.0/0.0/16_013/0001708. Nevertheless, the authors wish to thank the Czech Arctic Scientific Infrastructure of the University of South Bohemia in České Budějovice—the Josef Svoboda Station in the Svalbard (CzechPolar2 project LM2015078 supported by Ministry of Education Youth and Sports of the Czech Republic).

Author information

Authors and Affiliations

Authors

Contributions

MS participated on the design of experiments, collected most of the data, conducted the data analyses, and participated on the manuscript preparation. TH participated on the data collection and manuscript preparation. VP participated on the design of experiments and manuscript preparation. PV participated on the manuscript preparation. All authors have read the final version of the manuscript.

Corresponding author

Correspondence to Michaela Syrová.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Ethical approval

All experiments were conducted in accordance with the valid laws and regulations of Norway. Behavioral experiments on the wild birds were enabled by license for research experiments in Svalbard (in 2015: RiS-ID 10363, and in 2016: RiS-ID 10394).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Syrová, M., Hromádková, T., Pavel, V. et al. Responses of nesting Arctic terns (Sterna paradisaea) to disturbance by humans. Polar Biol 43, 399–407 (2020). https://doi.org/10.1007/s00300-020-02641-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-020-02641-2

Keywords

  • Antipredation behavior
  • Arctic tern
  • Human impact
  • Nesting behavior
  • Svalbard