Skip to main content

Biogeographical patterns and areas of endemism for the Magellan region based on the distribution of crustacean species (Amphipoda, Copepoda, and Euphausiacea)

Abstract

Patterns of endemism in marine researches have been traditionally inferred from approaches ignoring the spatial component of endemism of such patterns. In this contribution, we used a method based on an optimality criterion that evaluates the spatial congruence among the distribution of different taxa and provides a value of endemicity to a given area regardless of how that it was hypothesized. This method has been widely applied to land environments, whereas in the sea it has not been well explored yet. We analyzed the geographic distribution of three crustacean groups (Amphipoda, Copepoda, and Euphausiacea) to search for areas of endemism (AEs) in the Magellan region by applying an optimality algorithm. To summarize among numerous resulting AEs, we employed a meta-consensus criterion based on a clustering analysis. We identified three main AEs and, into most of them, we recognized smaller areas for the first time: Chiloé, Atlantic coast (with a smaller area in San Jorge Gulf and Cape Blanco), and Fueguia (Channels and Fjords, Malvinas/Falklands, Burdwood Bank, and South-West Atlantic transition area). Both Atlantic coast and Fueguia do not strictly match the provinces previously defined in the literature. Our study lays the foundation for a biogeographic scheme into the Magellan region and provides new insights on zones currently placed in marine protected areas for the southern tip of South America, such as Burdwood Bank, Yaganes, and Diego Ramírez-Drake Passage. Integrating distribution patterns of many other organisms for the Magellan region will certainly help reinforce the conservation measures currently implemented.

This is a preview of subscription content, access via your institution.

Fig. 1

adopted from Matano et al. 2010)

Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Aagesen L, Szumik C, Zuloaga FO, Morrone O (2009) Quantitative biogeography in the South America highlands—recognizing the Altoandina, Puna and Prepuna through the study of Poaceae. Cladistics 25:295–310

    Article  Google Scholar 

  2. Aagesen L, Szumik C, Goloboff P (2013) Consensus in the search for areas of endemism. J Biogeogr 40:2011–2016. https://doi.org/10.1111/jbi.12172

    Article  Google Scholar 

  3. Acha EM, Mianzan HW, Guerrero RA, Favero M, Bava J (2004) Marine fronts at the continental shelves of austral South America. J Mar Syst 44:83–105. https://doi.org/10.1016/j.jmarsys.2003.09.005

    Article  Google Scholar 

  4. Acha EM, Ehrlich MD, Muelbert JH, Pájaro M, Bruno D, Machinandiarena L, Cadaveira M (2018) Ichthyoplankton associated to the Frontal regions of the Southwestern Atlantic. In: Hoffmeyer MS (ed) Plankton ecology of the Southwestern Atlantic. Springer, Cham. https://doi.org/10.1007/978-3-319-77869-3_9

    Chapter  Google Scholar 

  5. Acha EM, Viñas MD, Derisio C, Alemany D, Piola AR (2020) Large-scale geographic patterns of pelagic copepods in the southwestern South Atlantic. J Mar Syst 204:1032815. https://doi.org/10.1016/j.jmarsys.2019.103281

    Article  Google Scholar 

  6. Agnew DJ (2002) Critical aspects of the Falkland Islands pelagic ecosystem: distribution, spawning and migration of pelagic animals in relation to oil exploration. Aquat Conserv 12:39–50. https://doi.org/10.1002/aqc.474

    Article  Google Scholar 

  7. Álvez-Valles CM, Balslev H, Alvim Carvalho F, García-Villacorta R, Grandez C, Menini Neto L (2018) Endemism and conservation of Amazon palms. Biodivers Conserv 27:765–784. https://doi.org/10.1590/0102-33062017abb0400

    Article  Google Scholar 

  8. Antezana T (2002) Adaptive behaviour of Euphausia mucronata in relation to the oxygen minimum layer of the Humboldt current. In: Farber J (ed) Oceanography of the Eastern Pacific. Elsevier, Amsterdam, pp 29–40

    Google Scholar 

  9. Aracena C, Lange C, Iriarte JL, Rebolledo L, Pantoja S (2011) Latitudinal patterns of export production recorded in surface sediments of the Chilean Patagonian fjords (41–55° S) as a response to water column productivity. Cont Shelf Res 31:340–355. https://doi.org/10.1016/j.csr.2010.08.008

    Article  Google Scholar 

  10. Arntz WE (2005) The Magellan-Antarctic connection: links and frontiers at southern high latitudes. Summary review. Sci Mar 69(S2):359–365. https://doi.org/10.3989/scimar.2005.69s2359

    Article  Google Scholar 

  11. Balech E (1954) División zoogeográfica del litoral sudamericano. Rev Biol Mar 4:184–195

    Google Scholar 

  12. Balech E, Ehrlich MD (2008) Esquema biogeográfico del Mar Argentino. Rev Inv Des Pesq 19:45–75

    Google Scholar 

  13. Brambati A, De Muro S, Di Grande A (1991) Marine transition Holocene terraces in the Eastern area of the straits of Magellan, Chile. Boll Geofis Teor Appl 39:47–76

    Google Scholar 

  14. Briggs JC (1974) Marine zoogeography. McGraw-Hill Co, New York

    Google Scholar 

  15. Briggs JC (1995) Global biogeography. Developments in paleontology and stratigraphy, vol 14. Elsevier, Amsterdam

    Google Scholar 

  16. Briggs JC, Bowen BW (2012) A realignment of marine biogeographic provinces with particular reference to fish distributions. J Biogeogr 39:12–30. https://doi.org/10.1111/j.1365-2699.2011.02613.x

    Article  Google Scholar 

  17. Caballero-Ochoa A, Martínez-Melo A, Conejeros-Vargas CA, Solís-Marín F, Laguarda-Figueras A (2017) Diversidad, patrones de distribución y “hotspots” de los equinoideos irregulares (Echinoidea: Irregularia) de México. Rev Biol Trop 65:S42–S59. https://doi.org/10.15517/rbt.v65i1-1.31666

    Article  Google Scholar 

  18. Casagranda MD, Roig-Juñent S, Szumik C (2009) Endemismo a diferentes escalas espaciales: un ejemplo con Carabidae (Coleoptera: Insecta) de América del Sur austral. Rev Chil Hist Nat 82:17–42. https://doi.org/10.4067/S0716-078X2009000100002

    Article  Google Scholar 

  19. Casagranda MD, Taher L, Szumik CA (2012) Endemicity analysis, parsimony and biotic elements: a formal comparison using hypothetical distributions. Cladistics 1:1–10. https://doi.org/10.1111/j.1096-0031.2012.00410.x

    Article  Google Scholar 

  20. Cepeda G, Temperoni B, Sabatini M, Viñas M, Derisio C, Santos B, Antacli J, Padovani L (2018) Zooplankton Communities of the Argentine continental shelf (SW Atlantic, ca. 34°–55° S), an overview. In: Hoffmeyer MS (ed) Plankton Ecology of the Southwestern Atlantic. Springer, Cham

    Google Scholar 

  21. Chiesa IL, Alonso GM (2007) Biodiversity of the Gammaridea and Corophiidea (Crustacea: Amphipoda) from the Beagle channel and the straits of Magellan: a preliminary comparison between their faunas. Rev Biol Trop 55:103–112

    Google Scholar 

  22. Chiesa L, Alonso G, Zelaya D (2005) Species richness and faunistic affinities of the Gammaridea and Corophiidea (Amphipoda) from shallow waters of southern Tierra del Fuego, Argentina: preliminary results. Sci Mar 69(2):167–174. https://doi.org/10.3989/scimar.2005.69s2167

    Article  Google Scholar 

  23. Costello MJ, Tsai P, Wong PS et al (2017) Marine biogeographic realms and species endemicity. Nat Commun 8:1057. https://doi.org/10.1038/s41467-017-01121-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Dana JD (1853) Crustacea. Part II. In: United States Exploring Expedition. During the years 1838, 1839, 1840, 1841, 1842. Under the command of Charles Wilkes. U. S. N. C. Sherman. Philadelphia 14:689–1618

  25. Dávila P, Figueroa D, Müller E (2002) Freshwater input into the coastal ocean and its relation with the salinity distribution off austral Chile (35–55° S). Cont Shelf Res 22:521–534. https://doi.org/10.1016/S0278-4343(01)00072-3

    Article  Google Scholar 

  26. Broyer C De, Rauschert M (1999) Faunal diversity of the benthic amphipods (Crustacea) of the Magellan469 region as compared to the Antarctic (preliminary results). Sci Mar 63(1):281–293

    Article  Google Scholar 

  27. De Broyer C, Lowry JK, Jażdżewski K, Robert H (2007) Census of Antarctic Marine life. Synopsis of the Amphipoda of the Southern Ocean. Part. 1. Catalogue of the Gammaridean and Corophiidean Amphipoda (Crustacea) of the Southern Ocean with distribution and ecological data. Bull Inst R Sci Nat Belg 77:1–325

    Google Scholar 

  28. Decembrini F, Bergamasco A, Mangoni O (2014) Seasonal characteristics of size-fractionated phytoplankton community and fate of photosynthesized carbon in a sub-Antarctic area (Straits of Magellan). J Mar Syst 136(1):31–41. https://doi.org/10.1016/j.jmarsys.2014.03.008

    Article  Google Scholar 

  29. Ebach MC, Morrone JJ, Lynne R, Parenti R, Viloria AL (2008) International code of area nomenclature. J Biogeogr 35:1153–1157

    Article  Google Scholar 

  30. Edler D, Guedes T, Zizka A, Rosvall M, Antonelli A (2017) Infomap bioregions: interactive mapping of biogeographical regions from species distributions. Syst Biol 66:197–204

    PubMed  Google Scholar 

  31. Escribano R, Fernández M, Aranís A (2003) Physical-chemical processes and patterns of diversity of the chilean eastern boundary pelagic and benthic marine ecosystems: an overview. Gayana 67:190–205

    Google Scholar 

  32. Falabella V, Campagna C, Caille G, Krapovickas S, Moreno D, Michelson A, Piola A, Schejter L, Zelaya D (2013) Banco Burdwood: contribuciones para el establecimiento de una línea de base y plan de manejo de la futura Área Marina Protegida. Preliminar Report, p 51

  33. Forbes E (1856) Solaster moretonis Memoirs of the Geological Survey of the United Kingdom. Br Organ Remains Decade 5:1–3

    Google Scholar 

  34. Galassi DM, Huys R, Reid JW (2009) Diversity, ecology and evolution of groundwater copepods. Freshw Biol 54:691–708

    Article  Google Scholar 

  35. Goloboff P (2005) NDM/VNDM ver. 2.7. Programs for identification of areas of endemism. Programs, documentation, and source code. www.zmuc.dk/public/phylogeny/endemism

  36. Guglielmo L, Ianora A (eds) (1995) Atlas of Marine Zooplankton Straits of Magellan. Springer, Berlin, p 279

    Google Scholar 

  37. Hammer O, Harper DAT, Ryan PD (2001) PAST: Paleontological Statistic software package for education and data analysis. Palaeontol Electronica 4:1–9

    Google Scholar 

  38. Häussermann V, Försterra G (2005) Distribution patterns of Chilean shallow-water sea anemones494 (Cnidaria: Anthozoa: Actiniaria, Corallimorpharia), with a discussion of the taxonomic and495 zoogeographic relationships between the actinofauna of the South East Pacific, the South West Atlantic496 and the Antarctic. Sci Mar 69(S2):91–102

    Article  Google Scholar 

  39. Hoffmeister CH, Ferrari A (2016) Areas of endemism of arthropods in the Atlantic Forest (Brazil): an approach based on a metaconsensus criterion using endemicity analysis. Biol J Linnean Soc 119:126–144

    Article  Google Scholar 

  40. Huang Y, Guo X, Wang Y (2013) Historical and ecological factors affecting regional patterns of500 endemism and species richness: the case of squamates in China. In: Silva-Opps M (ed) Current progress in biological research. Intech, Rijeka

    Google Scholar 

  41. Jaramillo E, Contreras H, Duarte C, Quijon P (2001) Relationships between community. Mar Ecol 22:323–342. https://doi.org/10.1046/j.1439-0485.2001.01752.x

    Article  Google Scholar 

  42. Kai Horst G (2005) Historical and ecological factors affecting regional patterns of500 endemism and species richness: the case of squamates in China. Sci Mar 69(S2):147–158. https://doi.org/10.3989/scimar.2005.69s2147

    Article  Google Scholar 

  43. Kreft H, Jetz W (2010) A framework for delineating biogeographical regions based on species distributions. J Biogeogr 37:2029–2053. https://doi.org/10.1111/j.1365-2699.2010.02375.x

    Article  Google Scholar 

  44. Matano R, Palma E, Piola A (2010) The influence of the Brazil and Malvinas currents on the Southwestern Atlantic shelf circulation. Ocean Sci 6:983–995. https://doi.org/10.5194/os-6-983-2010

    Article  Google Scholar 

  45. Miranda TP, Genzan GN, Marques AC (2015) Areas of endemism in the Southwestern Atlantic Ocean based on the distribution of benthic hydroids (Cnidaria: Hydrozoa). Zootaxa 4033:484–506. https://doi.org/10.11646/zootaxa.4033.4.2

    Article  PubMed  Google Scholar 

  46. Montecinos V, Lange CB (2009) The Humboldt current system: ecosystem components and processes, fisheries, and sediment studies. Prog Oceanogr 83:65–79

    Article  Google Scholar 

  47. Montiel A, Gerdes D, Arntz WE (2005) Distributional patterns of shallow-water polychaetes in the518 Magellan region: a zoogeographical and ecological synopsis. Sci Mar 69(S2):123–133

    Article  Google Scholar 

  48. Moreno RA, Rivadeneira MM, Hernandéz CE, Sampértegui S, Rozbaczylo N (2008) Do Rapoport’s rule, the mid-domain effect or the source-sink hypotheses predict bathymetric patterns of polychaete richness on the Pacific coast of South America. Glob Ecol Biogeogr 17:415–423

    Article  Google Scholar 

  49. Morrone JJ (1994) On the identification of areas of endemism. Syst Biol 43:438–441. https://doi.org/10.2307/2413679

    Article  Google Scholar 

  50. Morrone JJ (2001) Toward a cladistic model for the Caribbean subregion: delimitation of areas of endemism. Caldasia 23:43–76

    Google Scholar 

  51. Morrone JJ, Escalante T (2002) Parsimony analysis of endemicity (PAE) of Mexican terrestrial mammals at different area units: when size matters. J Biogeogr 29:1095–1104

    Article  Google Scholar 

  52. Nelson G, Platnick NI (1981) Systematics and biogeography: cladistics and vicariance. Columbia University Press, New York

    Google Scholar 

  53. Noguera-Urbano EA, Escalante T (2018) The Neotropical region sensu the areas of endemism of terrestrial mammals. Austral Syst Bot 30:470–484. https://doi.org/10.1071/SB16053

    Article  Google Scholar 

  54. Padovani LN, Viñas MD, Sánchez F, Mianzan HW (2012) Amphipod-supported food web: Themisto gaudichaudii, a key food resource for fishes in the southern Patagonian Shelf. J Sea Res 67:85–90

    Article  Google Scholar 

  55. Palma S, Silva N, Retamal MC, Castro L (2011) Seasonal and vertical distributional patterns of siphonophores and medusae in the Chiloe´ Interior Sea, Chile. Cont Shelf Res 31:260–271

    Article  Google Scholar 

  56. Paparazzo FE, Estevez JL (2018) Surface macronutrient dynamics of the drake passage and the Argentine Sea. In: Hoffmeyer MS, et al. (eds) Plankton ecology of the Southwestern Atlantic, an overview. Springer, Cham, p 586

    Google Scholar 

  57. Perillo GME, Piccolo MC, Marcovecchio J (2006) Coastal Oceanography of the Western South Atlantic continental shelf (33 to 55° S). In: Robinson AR, Brink KH (eds) The global Coastal Ocean, interdisciplinary regional studies and syntheses, vol 1. Harvard University Press, Cambridge, pp 295–327

    Google Scholar 

  58. Piola A, Rivas A (1997) Corrientes en la Plataforma Continental. In: Boschi EE (ed) El Mar Argentino y sus Recursos Pesqueros. INIDEP, Mar del Plata, pp 119–132

    Google Scholar 

  59. Platnick NI (1991) On areas of endemism. Aust Syst Bot 4:11–12

    Google Scholar 

  60. Prado JR, Brennand PGG, Godoy LP, Libardi GS, de Abreu-Junior EF, Roth PRO, Chiquito LA, Percequillo AR (2015) Species richness and areas of endemism of oryzomyine rodents (Cricetidae, Sigmodontinae) in South America: an NDM/VNDM approach. J Biogeogr 42:540–551

    Article  Google Scholar 

  61. QGIS Development Team (2009) QGIS Geographic Information System. Open Source Geospatial Foundation. https://qgis.osgeo.org

  62. Quintero I, Keil P, Jetz W, Crawford FW (2015) Historical biogeography using species geographical ranges. Syst Biol 64:1059–1073

    PubMed  PubMed Central  Article  Google Scholar 

  63. Rivas AL, Pisoni JP (2010) Identification, characteristics and seasonal evolution of surface thermal fronts in the Argentinean continental shelf. J Mar Sys 79:34–143. https://doi.org/10.1016/j.jmarsys.2009.07.008

    Article  Google Scholar 

  64. Sabatini M, Reta R, Matano RP (2004) Circulation and zooplankton biomass distribution over the southern Patagonian shelf during late summer. Contin Shelf Res 24:1359–1373

    Article  Google Scholar 

  65. Sabatini ME, Akselman R, Reta R et al (2012) Spring plankton communities in the southern Patagonian shelf: hydrography, mesozooplankton patterns and trophic relationships. J Mar Syst 94:33–51

    Article  Google Scholar 

  66. Saraceno M, Provost C, Piola AR, Bava J, Gagliardini A (2004) Brazil Malvinas frontal system as seen from 9 years of advanced very high resolution radiometer data. J Geophys Res 109:C05027

    Article  Google Scholar 

  67. Sassi M, Palma ED (2006) Modelo hidrodinámico del Estrecho de Magallanes. Mecánica Computacional XXV:1461–1477

    Google Scholar 

  68. Schejter L, Rimondino C, Chiesa I, Díaz de Astarloa JM, Doti B, Elías R, Bremec CS (2016) Namuncurá Marine protected area: an oceanic hot spot of benthic biodiversity at Burdwood Bank, Argentina. Polar Biol 39:2373–2386. https://doi.org/10.1007/s00300-016-1913-2

    Article  Google Scholar 

  69. Sepulveda RD, Camus PA, Moreno CA (2016) Diversity of faunal assemblages associated with ribbed mussel beds along the South American coast: relative roles of biogeography and bioengineering. Mar Ecol 37:943–956. https://doi.org/10.1111/maec.12301

    Article  Google Scholar 

  70. Smith RK, Freeman PL, Higgins JV, Wheaton KS, FitzHug TW, Ernstrom KJ, Das AA (2002) Priority areas for freshwater conservation action: a biodiversity assessment of the Southeastern Unites States. Nature Conservancy, Arlington

    Google Scholar 

  71. Spalding MD, Fox HE, Allen GR, Davidson N, Ferdana ZA, Finlayson M, Halpern BS, Miguel AJ, Lombana AL, Lourie SA, Kirsten DM, McManus E, Molnar J, Recchia CA, Robertson J (2007) Marine ecoregions of the world: a Bioregionalization of coastal and shelf areas. Bioscience 57:573–583

    Article  Google Scholar 

  72. Szumik CA, Goloboff PA (2004) Areas of endemism: an improved optimality criterion. Syst Biol 53:968–977. https://doi.org/10.1080/10635150490888859

    Article  PubMed  Google Scholar 

  73. Szumik CA, Cuezzo F, Goloboff PA, Chalup AE (2002) An optimality criterion to determine areas of endemism. Syst Biol 51:806–816. https://doi.org/10.1080/10635150290102483

    Article  PubMed  Google Scholar 

  74. Szumik C, Aagesen L, Casagranda D et al (2012a) Detecting areas of endemism with a taxonomically diverse data set: plants, mammals, reptiles, amphibians, birds, and insects from Argentina. Cladistics 27:11–13

    Google Scholar 

  75. Szumik CA, Aagesen L, Casagranda D, Arzamendias V, Baldo D, Claps LE, Cuezzo F, Díaz Gómez JM, Di Giacomo A, Giraurdo A, Goloboff P et al (2012b) Detecting areas of endemism with a taxonomically diverse data set: plants, mammals, reptiles, amphibians, birds and insects from Argentina. Cladistics 28:317–329

    Article  Google Scholar 

  76. Taverna A, Lagger C, Maggioni T, Reyna P, Lovrich G, Tatián M (2018) Ascidian distribution provides new insights to help define the biogeographic provinces in the South American Region. Polar Biol 41:1123–1131. https://doi.org/10.1007/s00300-018-2272-y

    Article  Google Scholar 

  77. Tingley GA, Purchase LV, Bravington MV, Holden SJ (1995) Biology and fisheries of hakes (M. hubbsi and M. australis) around the Falkland Islands. In: Alheit J, Pitcher TJ (eds) Hake: biology, fishery and markets. Chapman and Hall, London

    Google Scholar 

  78. Vilhena DA, Antonelli A (2015) A network approach for identifying and delimiting biogeographical regions. Nat Commun 6:6848. https://doi.org/10.1038/ncomms7848

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  79. Woodward S (1866) A manual of the Mollusca. John Weale, Londres, p 542

    Google Scholar 

  80. WoRMS Editorial Board (2018). World register of marine species. https://www.marinespecies.orgat

  81. Zhuang H, Yago M, Settele J, Li X, Ueshima R et al (2018) Species richness of Eurasian Zephyrus hairstreaks (Lepidoptera: Lycaenidae: Theclini) with implications on historical biogeography: an NDM/VNDM approach. PLoS ONE 13(1):e0191049. https://doi.org/10.1371/journal.pone.0191049

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas). Additional funding was provided by Grants CRN7030 from the Inter-American Institute for Global Change Research (IAI), supported by the US National Science Foundation (Grant GEO-1128040). We thank Luciana Cabral for her help with language editing.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mariana Griotti.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 290 kb)

300_2020_2626_MOESM2_ESM.pdf

Supplementary file2 (PDF 1891 kb)—Consensus areas (CAs) (in yellow quadrants) recognized in each analysis performed in VNDM/NDM software. Analyses A and B were performed at 2.5°x2.5° grid size (CAs: A0-A7 and B0-B9), analyses C, D and E were performed at 2°x2° grid size (see C0 and C1, D0-D2, and E0-E8), analyses F and G were performed at 1°x1° (see F0-F5 and G0-G7). Red spots indicate species records. The numbers following letter means the number of consensus area recovered by the software in each analysis.

Supplementary file3 (PDF 195 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brun, A.A., Griotti, M., Roig-Juñent, S.A. et al. Biogeographical patterns and areas of endemism for the Magellan region based on the distribution of crustacean species (Amphipoda, Copepoda, and Euphausiacea). Polar Biol 43, 237–250 (2020). https://doi.org/10.1007/s00300-020-02626-1

Download citation

Keywords

  • Southern South America
  • Crustacea
  • Areas of endemism
  • Optimality algorithm
  • Meta-consensus
  • Marine protected areas