Freshwater diatom assemblages from seabird-inhabited ponds in Hudson Strait, sub-Arctic Canada

Abstract

Nutrients and contaminants in wastes from seabird colonies can dramatically alter surrounding vegetation, water chemistry, and aquatic communities. Here we examine the effects of nesting Common Eiders (Somateria mollissima) on diatom assemblages from 21 ponds on islands in Hudson Strait, sub-Arctic Canada (63°12′N, 76°52′W). A total of 116 diatom taxa were identified, with assemblages dominated by benthic Diatoma and Nitzschia species typical of freshwater ponds influenced by seabird colonies. Canonical correspondence analysis (CCA), with forward selection and Monte Carlo permutation tests (999 repetitions), identified parameters correlated to seabird inputs, including specific conductivity, Al, and Cd concentrations, as the variables most closely linked to diatom species composition. A diatom-based conductivity inference model was developed using a weighted average with partial least squares (WA-PLS) model (r2boot = 0.723; RMSEP = 0.544) to describe the conductivity optima of the most commonly encountered taxa. Although we found increased numbers of eutrophilous taxa in highly eider-influenced ponds, the diatom assemblages were primarily influenced by conductivity, which was primarily linked to ocean spray, and statistical tests did not identify significant differences between the taxa of high and low eider-influenced sites (ANOSIM; p = 0.429; r = 0.009). This calibration set exhibits the potential use of diatoms as indicators of seabird abundance and density across breeding sites; however, in coastal ponds, ocean spray (and hence conductivity) appears to be a confounding factor affecting diatom assemblages.

This is a preview of subscription content, log in to check access.

Fig. 1

Adapted from Duda et al. (2018)

Fig. 2
Fig. 3
Fig. 4

References

  1. Antoniades D, Douglas MSV, Smol JP (2005) Benthic diatom autecology and inference model development from the Canadian High Arctic Archipelago. J Phycol 41(1):30–45. https://doi.org/10.1111/j.1529-8817.2005.04049.x

    Article  Google Scholar 

  2. Antoniades D, Hamilton PB, Douglas MS, Smol JP (2008) Diatoms of North America: the freshwater floras of Prince Patrick, Ellef Ringnes and northern Ellesmere Islands from the Canadian Arctic Archipelago. In: Lange-Bertalot H (ed) Iconographia Diatomologica, vol 17. ARG Gantner, Königstein, p 649

    Google Scholar 

  3. Battarbee RW, Jones VJ, Flower RJ, Cameron NG, Bennion H, Carvalho L, Juggins S (2001) Diatoms. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments. Vol. 3: terrestrial, algal, and siliceous indicators. Kluwer Academic Publishers, Dordrecht, pp 155–202

    Google Scholar 

  4. Birks HJB, Juggins S, Line JM (1990) Lake surface-water chemistry reconstructions from palaeolimnological data. In: Mason BJ (ed) The surface waters acidification programme. Cambridge University Press, Cambridge, pp 301–313

    Google Scholar 

  5. Blais JM, Kimpe LE, McMahon D, Keatley BE, Mallory ML, Douglas MSV, Smol JP (2005) Arctic seabirds transport marine-derived contaminants. Science 309(5733):445. https://doi.org/10.1126/science.1112658

    Article  CAS  PubMed  Google Scholar 

  6. Braune B, Muir D, DeMarch B, Gamberg M, Poole K, Currie R, Dodd M, Duschenko W, Eamer J, Elkin B, Evans M, Grundy S, Hebert C, Johnstone R, Kidd K, Koenig B, Lockhart L, Marshall H, Reimer K, Sanderson J, Shutt L (1999) Spatial and temporal trends of contaminants in Canadian Arctic freshwater and terrestrial ecosystems: a review. Sci Total Environ 230(1–3):145–207. https://doi.org/10.1016/S0048-9697(99)00038-8

    Article  CAS  PubMed  Google Scholar 

  7. Brimble SK, Foster KL, Mallory ML, Macdonald RW, Smol JP, Blais JM (2009) High Arctic ponds receiving biotransported nutrients from a nearby seabird colony are also subject to potentially toxic loadings of arsenic, cadmium and zinc. Environ Toxicol Chem 28(11):2426–2433. https://doi.org/10.1897/09-235.1

    Article  CAS  PubMed  Google Scholar 

  8. Cheng W, Sun L, Kimpe LE, Mallory ML, Smol JP, Gallant LR, Li J, Blais JM (2016) Sterols and stanols preserved in pond sediments track seabird biovectors in a high arctic environment. Environ Sci Technol 50(17):9351–9360. https://doi.org/10.1021/acs.est.6b02767

    Article  CAS  PubMed  Google Scholar 

  9. Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18(1):117–143. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x

    Article  Google Scholar 

  10. Clyde N (2016) Marine nutrient subsidies to the terrestrial environment of Common Eider nesting colonies in the Canadian Arctic. Dissertation, Carleton University

  11. Conservation of Arctic Flora and Fauna (CAFF) (2013) Arctic biodiversity assessment: status and trends in Arctic biodiversity. Conservation of Arctic Flora and Fauna, Akureyri, p 557

    Google Scholar 

  12. Duda MP, Hargan KE, Michelutti N, Kimpe LE, Clyde N, Gilchrist HG, Mallory ML, Blais JM, Smol JP (2018) Breeding eider ducks strongly influence subarctic coastal pond chemistry. Aquat Sci 80:40. https://doi.org/10.1007/s00027-018-0591-2

    Article  CAS  Google Scholar 

  13. Ellis JC (2005) Marine birds on land: a review of plant biomass, species richness, and community composition in seabird colonies. Plant Ecol 181(2):227–241. https://doi.org/10.1007/s11258-005-7147-y

    Article  Google Scholar 

  14. Environment Canada Manual of Analytical Methods (1994) Major ions and nutrients. Vol. 1. National Laboratory for Environmental Testing. Canadian Centre for Inland Waters, Burlington

    Google Scholar 

  15. Environment Canada Manual of Analytical Methods (1994) Trace metals. Vol. 2. National Laboratory for Environmental Testing. Canadian Centre for Inland Waters, Burlington

    Google Scholar 

  16. Fallu M-A, Allaire N, Pienitz R (2000) Freshwater diatoms from northern Québec and Labrador (Canada): species-environment relationships in lakes of boreal forest, forest-tundra and tundra regions. In: Lange-Bertalot H, Kociolek P (eds) Bibliotheca diatomologica. Schweizerbart Science Publishers, Berlin, p 200

    Google Scholar 

  17. Gilliland SG, Gilchrist HG, Rockwell RF, Robertson GJ, Savard J-PL, Merkel F, Mosbech A (2009) Evaluating the sustainability of harvest among northern common eiders Somateria mollissima borealis in Greenland and Canada. Wildl Biol 15(1):24–36. https://doi.org/10.2981/07-005

    Article  Google Scholar 

  18. Glew JR (1988) A portable extruding device for close interval sectioning of unconsolidated core samples. J Paleolimnol 1(3):235–239. https://doi.org/10.1007/BF00177769

    Article  Google Scholar 

  19. Glew JR, Smol JP (2016) A push corer developed for retrieving high-resolution sediment cores from shallow waters. J Paleolimnol 56(1):67–71. https://doi.org/10.1007/s10933-015-9873-z

    Article  Google Scholar 

  20. Gregory-Eaves I, Smol JP, Finney BP, Edwards ME (1999) Diatom-based transfer functions for inferring past climatic and environmental changes in Alaska, USA. Arct Antarc Alp Res 31(4):353–365. https://doi.org/10.1080/15230430.1999.12003320

    Article  Google Scholar 

  21. Gregory-Eaves I, Smol JP, Douglas MSV, Finney BP (2003) Diatoms and sockeye salmon (Oncorhynchus nerka) population dynamics: reconstructions of salmon-derived nutrients over the past 2,200 years in two lakes from Kodiak Island, Alaska. J Paleolimn 30(1):35–53. https://doi.org/10.1023/A:1024792831385

    Article  Google Scholar 

  22. Hadley KR, Douglas MSV, Blais JM, Smol JP (2010) Nutrient enrichment in the High Arctic associated with Thule Inuit whalers: a paleolimnological investigation from Ellesmere Island (Nunavut, Canada). Hydrobiologia 649(1):129–138. https://doi.org/10.1007/s10750-010-0235-6

    Article  CAS  Google Scholar 

  23. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1):9

    Google Scholar 

  24. Hargan KE, Stewart EM, Michelutti N, Grooms C, Kimpe LE, Mallory ML, Smol JP, Blais JM (2018) Sterols and stanols as novel tracers of waterbird population dynamics in freshwater ponds. Proc R Soc B 285:20180631. https://doi.org/10.1098/rspb.2018.0631

    Article  PubMed  Google Scholar 

  25. Hargan KE, Gilchrist HG, Clyde NMT, Iverson SA, Forbes MR, Kimpe LE, Mallory ML, Michelutti N, Smol JP, Blais JM (2019) Multicentury perspective assessing the sustainability of the historical harvest of seaducks. Proc Natl Acad Sci USA 116(17):8425–8430. https://doi.org/10.1073/pnas.1814057116

    Article  CAS  PubMed  Google Scholar 

  26. IBM Corp (2010) IBM SPSS Statistics for Windows, Version 19.0.0. IBM Corp., Armonk

  27. Juggins S (2013) Quantitative reconstructions in palaeolimnology: new paradigm or sick science? Quat Sci Rev 64:20–32. https://doi.org/10.1016/j.quascirev.2012.12.014

    Article  Google Scholar 

  28. Juggins S (2016) C2 Version 1.7.7 User guide. Software for ecological and palaeoecological data analysis and visualisation. Newcastle University, Newcastle upon Tyne, p 73

  29. Keatley BE, Douglas MSV, Blais JM, Mallory ML, Smol JP (2009) Impacts of seabird-derived nutrients on water quality and diatom assemblages from Cape Vera, Devon Island, Canadian High Arctic. Hydrobiologia 621(1):191–205. https://doi.org/10.1007/s10750-008-9670-z

    Article  CAS  Google Scholar 

  30. Koppen JD (1975) A morphological and taxonomic consideration of Tabellaria (Bacillariophyceae) from the northcentral United States. J Phycol 11(2):236–244. https://doi.org/10.1111/j.1529-8817.1975.tb02774.x

    Article  Google Scholar 

  31. Krammer K, Lange-Bertalot H (1986–1991) Bacillariophyceae. In: Ettl H, Gerloff D, Heynig D, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa, Vol. 2(1–4), Gustav Fischer Verlag, Stuttgart, p 876, 596, 576, 437

  32. Lavoie C, Pienitz R, Allard M (2006) Diatom flora of the Nastapoka River delta: an emerging coastal system on the eastern shore of Hudson Bay, subarctic Québec. Nova Hedwigia 83(1–2):31–51. https://doi.org/10.1127/0029-5035/2006/0083-0031

    Article  Google Scholar 

  33. Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge, pp 50–51

    Google Scholar 

  34. Lim DSS, Douglas MSV, Smol JP (2001) Diatoms and their relationship to environmental variables from lakes and ponds on Bathust Island, Nunavut, Canadian High Arctic. Hydrobiologia 450:215–230. https://doi.org/10.1023/A:1017553112643

    Article  Google Scholar 

  35. Mallory ML, Mahon L, Tomlik MD, White C, Milton GR, Spooner I (2015) Colonial marine birds influence island soil chemistry through biotransport of trace elements. Water Air Soil Pollut 226:31. https://doi.org/10.1007/s11270-015-2314-9

    Article  CAS  Google Scholar 

  36. Masmoudi S, Nguyen-Deroche N, Caruso A, Ayadi H, Morant-Manceau A, Tremblin G, Bertrand M, Schoefs B (2013) Cadmium, copper, sodium and zinc effects on diatoms: from heaven to hell—A review. Cryptogam Algol 34(2):185–225. https://doi.org/10.7872/crya.v34.iss2.2013.185

    Article  Google Scholar 

  37. Merkel FR (2004) Evidence of recent population recovery in Common Eiders breeding in Western Greenland. Arctic 57(1):27–36. https://doi.org/10.14430/arctic480

    Article  Google Scholar 

  38. Michelutti N, Smol JP, Douglas MSV (2006) Ecological characteristics of modern diatom assemblages from Axel Heiberg Island (High Arctic Canada) and their application to paleolimnological inference models. Can J Bot 84(11):1695–1713. https://doi.org/10.1139/b06-122

    Article  Google Scholar 

  39. Michelutti N, Douglas MSV, Smol JP (2007) Evaluating diatom community composition in the absence of marked limnological gradients in the high Arctic: a surface sediment calibration set from Cornwallis Island (Nunavut, Canada). Polar Biol 30(11):1459–1473. https://doi.org/10.1007/s00300-007-0307-x

    Article  Google Scholar 

  40. Michelutti N, Blais JM, Mallory ML, Brash J, Thienpont J, Kimpe LE, Douglas MSV, Smol JP (2010) Trophic position influences the efficacy of seabirds as metal biovectors. Proc Natl Acad Sci USA 107(23):10543–10548. https://doi.org/10.1073/pnas.1001333107

    Article  PubMed  Google Scholar 

  41. Michelutti N, McCleary KM, Antoniades D, Sutherland P, Blais JM, Douglas MSV, Smol JP (2013) Using paleolimnology to track the impacts of early Arctic peoples on freshwater ecosystems from southern Baffin Island, Nunavut. Quat Sci Rev 76:82–95. https://doi.org/10.1016/j.quascirev.2013.06.027

    Article  Google Scholar 

  42. Ng SL, King RH (1999) Development of a diatom-based specific conductivity model for the glacio-isostatic lakes of Truelove Lowland: implications for paleoconductivity and paleoenvironmental reconstructions in Devon Island lakes, N.W.T., Canada. J Paleolimnol 22(4):367–382. https://doi.org/10.1023/A:1008022501117

    Article  Google Scholar 

  43. O’Connell JM, Reavie ED, Smol JP (1997) Assessment of water quality using epiphytic diatom assemblages on Cladophora from the St. Lawrence River (Canada). Diatom Res 12(1):55–70. https://doi.org/10.1080/0269249X.1997.9705402

    Article  Google Scholar 

  44. Otero XL, De La Peña-Lastra S, Pérez-Alberti A, Ferreira TO, Huerta-Diaz MA (2018) Seabird colonies as important global drivers in the nitrogen and phosphorus cycles. Nat Commun 9:246. https://doi.org/10.1038/s41467-017-02446-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Robertson GJ, Gilchrist HG (1998) Evidence of population declines among common eiders breeding in the Belcher Islands, Northwest Territories. Arctic 51(4), 378–385. https://doi.org/10.14430/arctic1081

  46. Ryves DB, McGowan S, Anderson NJ (2002) Development and evaluation of a diatom-conductivity model from lakes in West Greenland. Freshwater Biol 47(5):995–1014. https://doi.org/10.1046/j.1365-2427.2002.00832.x

    Article  Google Scholar 

  47. Sanborn-Barrie M, St-Onge MR, Young MD, James DT (2008) Bedrock geology of southwestern Baffin Island, Nunavut: expanding the tectonostratigraphic framework with relevance to mineral resources. Geological Survey Canada, Current Research 2008-6, p 16

  48. Smol JP (2008) Pollution of lakes and rivers: a paleoenvironmental perspective, 2nd edn. Blackwell Publishing, Oxford UK, p 383

    Google Scholar 

  49. Smol JP, Stoermer EF (eds) (2010) The diatoms: applications for the environmental and earth sciences, 2nd edn. Cambridge University Press, Cambridge, p 655

    Google Scholar 

  50. Stewart EM, Michelutti N, Shenstone-Harris S, Grooms C, Weseloh C, Kimpe LE, Blais JM, Smol JP (2015) Tracking the history and ecological changes of rising double-crested cormorant populations using pond sediments from islands in Eastern Lake Ontario. PLoS ONE 10(7):e0134167. https://doi.org/10.1371/journal.pone.0134167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. ter Braak CJF, Šmilauer P (2012) Canoco reference manual and user’s guide: software for ordination, version 5.0. Microcomputer Power, Ithaca, p 496

    Google Scholar 

  52. Zmudczyńska-Skarbek K, Barcikowski M, Drobniak SM, Gwiazdowicz DJ, Richard P, Skubała P, Stempniewicz L (2017) Transfer of ornithogenic influence through different trophic levels of the Arctic terrestrial ecosystem of Bjørnøya (Bear Island), Svalbard. Soil Biol Biochem 115:475–489. https://doi.org/10.1016/j.soilbio.2017.09.008

    Article  CAS  Google Scholar 

  53. Zwolicki A, Zmudczyńska-Skarbek KM, Iliszko L, Stempniewicz L (2013) Guano deposition and nutrient enrichment in the vicinity of planktivorous and piscivorous seabird colonies in Spitsbergen. Polar Biol 36(3):363–372. https://doi.org/10.1007/s00300-012-1265-5

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Michael Janssen, Jake Russell-Mercier, and Chris Grooms for fieldwork logistical support; Grant Gilchrist, Nik Clyde, Sarah Robinson, John Klymko, and Frankie Jean-Gagnon for their help in the field and overall support on the project. They also thank the Aiviq Hunters and Trappers Organizations and Ivujivik Hunters and Trappers Association for their support in our research. This research was funded by Environment and Climate Change Canada (ECCC), the W. Garfield Weston Foundation, and the Natural Sciences and Engineering Research Council of Canada (NSERC). Finally, the authors thank Dr. Bart Van de Vijver and two other anonymous reviewers for their helpful comments and feedback.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Matthew P. Duda.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 25 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Duda, M.P., Hargan, K.E., Michelutti, N. et al. Freshwater diatom assemblages from seabird-inhabited ponds in Hudson Strait, sub-Arctic Canada. Polar Biol 42, 1549–1560 (2019). https://doi.org/10.1007/s00300-019-02541-0

Download citation

Keywords

  • Training set
  • Common eiders
  • Environmental reconstruction
  • Conductivity
  • Ocean spray
  • Paleolimnology