Polar Biology

, Volume 41, Issue 11, pp 2343–2354 | Cite as

Antarctic Pseudomonas spp. promote wheat germination and growth at low temperatures

  • Luis Andrés YarzábalEmail author
  • Lorena Monserrate
  • Lenys Buela
  • Eduardo Chica
Original Paper


The development of cold-active biofertilizers and biopesticides could help improve sustainable agriculture in mountainous regions. With this aim, both psychrophilic and psychrotolerant microorganisms have been prospected in cold regions around the world and tested for their plant-growth promoting (PGP) effects. Interestingly, very little is known about the PGP effects of polar microorganisms in commercial crops. This study aimed at isolating cold-active plant-growth promoting Pseudomonas spp. from Antarctic soils and testing their PGP effects, both in vitro and on wheat (Triticum aestivum). Twenty-five Pseudomonas spp. strains isolated from Antarctic soils at Greenwich Island (South Shetland Islands, Antarctic Peninsula) were tested. The isolates grew well at temperatures ranging from 4 to 30 °C and were therefore considered as eury-psychrophiles. The isolates solubilized tri-calcium phosphate at 8 and 16 °C in the presence of different sugars as sole carbon sources. Besides producing indole-acetic acid, siderophores and hydrogen cyanide, several isolates inhibited growth of three plant pathogenic fungi (Fusarium oxysporum, Pythium ultimum and Phytophtora infestans) by means of both soluble- and volatile-secondary metabolites. Bacterization of T. aestivum seeds with selected isolates significantly enhanced root elongation. Moreover, when grown in sterile soil and in a temperature-controlled growth chamber at 14 ± 1 °C, inoculated T. aestivum seedlings showed a significant increase in their root- and shoot-lengths compared to untreated controls. Overall, the results suggest that some of these Antarctic Pseudomonas spp. isolates could act as cold-active biofertilizers.


Biofertilizers Plant-growth promoting bacteria Pseudomonas Psychrotolerant Antarctica 



The authors are grateful to Ing. Esteban Falconí (INIAP Santa Catalina, Ecuador) for kindly supplying the wheat seeds. We also thank Kari Carson for critical reading of the manuscript. LAY acknowledges Proyecto Prometeo of the National Secretary of Science, Technology and Innovation of Ecuador (SENESCYT). This project was partially financed by SENESCYT and Ecuadorian Antarctic Institute (INAE) and was conducted under Genetic Resource Access Contract No MAE-DNB-CM-2017-0059.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Alström S, Burns RG (1989) Cyanide production by rhizobacteria as a possible mechanism of plant growth inhibition. Biol Fertil Soils 7:232–238CrossRefGoogle Scholar
  2. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefGoogle Scholar
  3. Antoun H, Prévost D (2006) Ecology of plant growth promoting rhizobacteria. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Netherlands, pp 1–38Google Scholar
  4. Arcand MM, Schneider KD (2006) Plant- and microbial-based mechanisms to improve the agronomic effectiveness of phosphate rock: a review. An Acad Bras Cienc 78:791–807CrossRefGoogle Scholar
  5. Bakker AW, Schippers B (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas sp. mediated plant growth stimulation. Soil Biol Biochem 19:451–457CrossRefGoogle Scholar
  6. Balcázar W, Rondón J, Rengifo M, Ball MM, Melfo A, Gómez W, Yarzábal LA (2015) Bioprospecting glacial ice for plant growth promoting bacteria. Microbiol Res 177:1–7. CrossRefPubMedGoogle Scholar
  7. Ball MM, Gómez W, Magallanes X, Rosales R, Melfo A, Yarzábal LA (2014) Bacteria recovered from a high-altitude, tropical glacier in Venezuelan Andes. World J Microbiol Biotechnol 30:931–941. CrossRefPubMedGoogle Scholar
  8. Barrientos-Diaz L, Gidekel M, Gutierrez A (2008) Characterization of rhizospheric bacteria isolated from Deschampsia antarctica Desv. World J Microbiol Biotechnol 24:2289–2296CrossRefGoogle Scholar
  9. Berríos G, Cabrera G, Gidekel M et al (2013) Characterization of a novel Antarctic plant growth-promoting bacterial strain and its interaction with Antarctic hair grass (Deschampsia antarctica Desv). Polar Biol 36:349–362CrossRefGoogle Scholar
  10. Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350CrossRefGoogle Scholar
  11. Bisht SC, Mishra PK, Joshi GK (2013) Genetic and functional diversity among root-associated psychrotrophic Pseudomonad’s isolated from the Himalayan plants. Arch Microbiol 195:605–615CrossRefGoogle Scholar
  12. Bozal N, Montes MJ, Mercadé E (2007) Pseudomonas guineae sp. nov., a novel psychrotolerant bacterium from an Antarctic environment. Int J Syst Evol Microbiol 57:2609–2612CrossRefGoogle Scholar
  13. Bric JM, Bostock RM, Silverstone SE (1991) Rapid in situ assay for indoleacetic-acid production by bacteria immobilized on a nitrocellulose membrane. Appl Environ Microbiol 57:535–538PubMedPubMedCentralGoogle Scholar
  14. Canion A, Prakash O, Green SJ, Jahnke L, Kuypers MM, Kostka JE (2013) Isolation and physiological characterization of psychrophilic denitrifying bacteria from permanently cold Arctic fjord sediments (Svalbard, Norway). Environ Microbiol 15:1606–1618CrossRefGoogle Scholar
  15. Carrión O, Miñana-Galbis D, Montes MJ, Mercadé E (2011) Pseudomonas deceptionensis sp. nov., a psychrotolerant bacterium from the Antarctic. Int J Syst Evol Microbiol 61:2401–2405. CrossRefPubMedGoogle Scholar
  16. Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959. CrossRefPubMedPubMedCentralGoogle Scholar
  17. da Silva AC, Rachid CTCC, de Jesus HE et al (2017) Predicting the biotechnological potential of bacteria isolated from Antarctic soils, including the rhizosphere of vascular plants. Polar Biol. CrossRefGoogle Scholar
  18. Daayf F, Adam L, Fernando WGD (2003) Comparative screening of bacteria for biological control of potato late blight (strain US-8), using in vitro, detached-leaves, and whole-plant testing systems. Can J Plant Pathol-Rev Can Phytopathol 25:276–284CrossRefGoogle Scholar
  19. De Curtis F, Lima G, Vitullo D, De Cicco V (2010) Biocontrol of Rhizoctonia solani and Sclerotium rolfsii on tomato by delivering antagonistic bacteria through a drip irrigation system. Crop Prot 29:663–670CrossRefGoogle Scholar
  20. Effmert U, Kalderas J, Warnke R, Piechulla B (2012) Volatile mediated interactions between bacteria and fungi in the soil. J Chem Ecol 38:665–703CrossRefGoogle Scholar
  21. Egamberdiyeva D, Höflich G (2003) Influence of growth-promoting bacteria on the growth of wheat in different soils and temperatures. Soil Biol Biochem 35:973–978CrossRefGoogle Scholar
  22. Flury P, Vesga P, Péchy-Tarr M, Aellen N, Dennert F, Hofer N, Kupferschmied KP, Kupferschmied P, Metla Z, Ma Z, Siegfried S, de Weert S, Bloemberg G, Höfte M, Keel CJ, Maurhofer M (2017) Antimicrobial and insecticidal: cyclic lipopeptides and hydrogen cyanide produced by plant-beneficial pseudomonas strains CHA0, CMR12a, and PCL1391 contribute to insect killing. Front Microbiol 8:100. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Gidekel M, Gutierrez A, Barrientos L, Cabrera G, Berrios G, Mihovilovic I (2008) Biofertilizer formulation WO/2008/130701. Accessed 20 Oct 2017
  24. Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117CrossRefGoogle Scholar
  25. Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Goldstein AH (2007) Future trends in research on microbial phosphate solubilization: 100 years of insolubility. In: Velazquez E, Rodrıguez-Barrueco C (eds) First international meeting on microbial phosphate solubilization. Springer, Dordrecht, pp 91–96CrossRefGoogle Scholar
  27. Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319CrossRefGoogle Scholar
  28. Haas D, Keel C, Reimmann C (2002) Signal transduction in plant-beneficial rhizobacteria with biocontrol properties. Anton Van Leeuwenhoek 81:385–395CrossRefGoogle Scholar
  29. Hemala L, Zhang D, Margesin R (2014) Cold-active antibacterial and antifungal activities and antibiotic resistance of bacteria isolated from an alpine hydrocarbon-contaminated industrial site. Res Microbiol 165:447–456CrossRefGoogle Scholar
  30. Heuer H, Krsek M, Baker P, Smalla K, Wellington EM (1997) Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microb 63:3233–3241Google Scholar
  31. Hoagland DR, Arnon DI (1938) The water culture method for growing plants without soil. Calif Agric Exp Stn Circ 347:32Google Scholar
  32. Holland MA (1997) Occams razor applied to hormonology. Are cytokinins produced by plants? Plant Physiol 115:865–868CrossRefGoogle Scholar
  33. Jousset A, Lara E, Wall LG, Valverde C (2006) Secondary metabolites help biocontrol strain Pseudomonas fluorescens CHA0 to escape protozoan grazing. Appl Environ Microbiol 72:7083–7090CrossRefGoogle Scholar
  34. Kai M, Haustein M, Molina F, Petri A, Scholz B, Piechulla B (2009) Bacterial volatiles and their action potential. Appl Microbiol Biotechnol 81:1001–1012. CrossRefPubMedGoogle Scholar
  35. Kanchiswamy CN, Malnoy M, Maffei ME (2015) Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Front Plant Sci 6:151. CrossRefPubMedPubMedCentralGoogle Scholar
  36. Katiyar V, Goel R (2003) Solubilization of inorganic phosphate and plant growth promotion by cold tolerant mutants of Pseudomonas fluorescens. Microbiol Res 158:163–168CrossRefGoogle Scholar
  37. Keller-Costa T, Jousset A, van Overbeek L, van Elsas JD, Costa R (2014) The freshwater sponge Ephydatia fluviatilis harbours diverse Pseudomonas species (Gammaproteobacteria, Pseudomonadales) with broad-spectrum antimicrobial activity. PLoS ONE 9(2):e88429CrossRefGoogle Scholar
  38. Kim H-J, Jeun Y-C (2006) Resistance induction and enhanced tuber production by pre-inoculation with bacterial strains in potato plants against Phytophthora infestans. Mycobiology 34:67–72CrossRefGoogle Scholar
  39. Kosina M, Bartak M, Maslanova I, Pascutti AV, Sedo O, Lexa M, Sedlacek I (2013) Pseudomonas prosekii sp. nov., a novel psychrotrophic bacterium from Antarctica. Curr Microbiol 67:637–646CrossRefGoogle Scholar
  40. Kumar B, Trivedi P, Pandey A (2007) Pseudomonas corrugata: a suitable bioinoculant for maize grown under rainfed conditions of Himalayan region. Soil Biol Biochem 39:3093–3100CrossRefGoogle Scholar
  41. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175Google Scholar
  42. Lessie TG, Phibbs PV (1984) Alternative pathways of carbohydrate utilization in pseudomonads. Annu Rev Microbiol 38:359–388CrossRefGoogle Scholar
  43. Lifshitz R, Kloepper JW, Scher FM, Tipping EM, Laliberté M (1986) Nitrogen fixing Pseudomonads isolated from roots of plants grown in the Canadian High Arctic. Appl Environ Microbiol 51:251–255PubMedPubMedCentralGoogle Scholar
  44. Lifshitz R, Kloepper JW, Kozlowski M, Simonson C, Carlson J, Tipping EM, Zaleska I (1987) Growth promotion of canola (rapeseed) seedlings by a strain of Pseudomonas putida under gnotobiotic conditions. Can J Microbiol 33:390–395CrossRefGoogle Scholar
  45. Lugtenberg BJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490CrossRefGoogle Scholar
  46. Maida I, Fondi M, Papaleo MC et al (2014) Phenotypic and genomic characterization of the Antarctic bacterium Gillisia sp. CAL575, a producer of antimicrobial compounds. Extremophiles 18:35–49. CrossRefPubMedGoogle Scholar
  47. Mancinelli RL (1984) Population-dynamics of alpine tundra soil bacteria, Niwot Ridge, Colorado Front Range, USA. Arc Alp Res 16:185–192CrossRefGoogle Scholar
  48. Meyer AF, Lipson DA, Schadt CW, Martin AP, Schmidt SZ (2004) Molecular and metabolic characterization of cold-tolerant alpine soil Pseudomonas sensu stricto. Appl Environ Microbiol 70:483–489CrossRefGoogle Scholar
  49. Mishra PK, Mishra S, Selvakumar G, Bisht SC, Kundu S, Bisht JK, Gupta HS (2008) Characterization of a psychrotrophic plant growth promoting Pseudomonas PGERs17 (MTCC 9000) isolated from North Western Indian Himalayas. Ann Microbiol 58:1–8CrossRefGoogle Scholar
  50. Mishra PK, Mishra S, Bisht SC, Selvakumar G, Kundu S, Bisht JK, Gupta HS (2009) Isolation, molecular characterization and growth-promotion activities of a cold tolerant bacterium Pseudomonas sp. NARs9 (MTCC9002) from the Indian Himalayas. Biol Res 42:305–313CrossRefGoogle Scholar
  51. Mishra PK, Bisht SC, Ruwari P, Selvakumar G, Joshi GK, Bisht JK, Bhatt JC, Gupta HS (2011) Alleviation of cold stress in inoculated wheat (Triticum aestivum L.) seedlings with psychrotolerant Pseudomonads from NW Himalayas. Arch Microbiol 193:497–513. CrossRefPubMedGoogle Scholar
  52. Moreno R, Rojo F (2014) Features of pseudomonads growing at low temperatures: another facet of their versatility. Environ Microbiol Rep 6:417–426CrossRefGoogle Scholar
  53. Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270CrossRefGoogle Scholar
  54. Negi YK, Garg SK, Kumar J (2005) Cold tolerant fluorescent Pseudomonas isolates from Garhwal Himalayas as potential plant growth promoting and biocontrol agents in pea. Curr Sci 89:2151–2156Google Scholar
  55. Neidig N, Paul RJ, Scheu S, Jousset A (2011) Secondary metabolites of Pseudomonas fluorescens CHA0 drive complex non-trophic interactions with bacterivorous nematodes. Microb Ecol 61:853–859CrossRefGoogle Scholar
  56. Orlandini V, Maida I, Fondi M et al (2014) Genomic analysis of three sponge-associated Arthrobacter Antarctic strains, inhibiting the growth of Burkholderia cepacia complex bacteria by synthesizing volatile organic compounds. Microbiol Res 169:593–601CrossRefGoogle Scholar
  57. Pandey A, Palni LMS (1998) Isolation of Pseudomonas corrugata from Sikkim Himalaya. World J Microbiol Biotechnol 14:11–413CrossRefGoogle Scholar
  58. Pandey A, Trivedi P, Kumar B, Chaurasia B, Singh S, Palni LMS (2004) Development of microbial inoculants for enhancing plant performance in the mountains. In: Reddy MS, Kumar S (eds) Biotechnological approaches for sustainable development. Allied Publishers, New Delhi, pp 13–20Google Scholar
  59. Pandey A, Trivedi P, Kumar B, Palni LMS (2006) Characteristics of a phosphate solubilizing and antagonistic strain of Pseudomonas putida (B0) isolated from a sub-alpine location in the Indian central Himalaya. Curr Microbiol 53:102–107CrossRefGoogle Scholar
  60. Pandiyan A, Ray MK (2013) Draft genome sequence of the Antarctic psychrophilic bacterium Pseudomonas syringae strain Lz4W. Genome Announc 1:e00377. CrossRefPubMedPubMedCentralGoogle Scholar
  61. Papaleo MC, Romoli R, Bartolucci G et al (2013) Bioactive volatile organic compounds from Antarctic (sponges) bacteria. New Biotechnol 30:824–838CrossRefGoogle Scholar
  62. Patten CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801CrossRefGoogle Scholar
  63. Pavlov MS, Lira F, Martínez JL, Olivares J, Marshall SH (2015) Draft genome sequence of Antarctic Pseudomonas sp. strain KG01 with full potential for biotechnological applications. Genome Announc 3:e00906–e00915. CrossRefPubMedPubMedCentralGoogle Scholar
  64. Persello-Cartieaux F, Nussaume L, Robaglia C (2003) Tales from the underground: molecular plant–rhizobacteria interactions. Plant Cell Environ 26:189–199CrossRefGoogle Scholar
  65. Presta L, Inzucchi I, Bosi E, Fondi M, Perrin E, Maida I, Miceli E, Tutino ML, Lo Giudice A, de Pascale D, Fani R (2016) Draft genome sequences of the antimicrobial producers Pseudomonas sp. TAA207 and Pseudomonas sp. TAD18 isolated from Antarctic sediments. Genome Announc 4:e00728. CrossRefPubMedPubMedCentralGoogle Scholar
  66. Preston GM (2004) Plant perceptions of plant growth-promoting Pseudomonas. Philos Trans R Soc Lond B Biol Sci 359:907. CrossRefPubMedPubMedCentralGoogle Scholar
  67. Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 81:537–547CrossRefGoogle Scholar
  68. Ramette A, Frapolli M, Fischer-Le Saux M, Gruffaz C, Meyer JM, Défago G, Sutra L, Moënne-Loccoz Y (2011) Pseudomonas protegens sp. nov., widespread plant-protecting bacteria producing the biocontrol compounds 2,4-diacetylphloroglucinol and pyoluteorin. Syst Appl Microbiol 34:180–188. CrossRefPubMedGoogle Scholar
  69. Reasoner DJ, Geldreich EE (1985) A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7PubMedPubMedCentralGoogle Scholar
  70. Reddy GS, Matsumoto GI, Schumann P, Stackebrandt E, Shivaji S (2004) Psychrophilic pseudomonads from Antarctica: Pseudomonas antarctica sp. nov., Pseudomonas meridiana sp. nov. and Pseudomonas proteolytica sp. nov. Int J Syst Evol Microbiol 54:713–719CrossRefGoogle Scholar
  71. Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339CrossRefGoogle Scholar
  72. Romoli R, Papaleo M, De Pascale D, Tutino M, Michaud L, LoGiudice A et al (2014) GC-MS volatolomic approach to study the antimicrobial activity of the antarctic bacterium Pseudoalteromonas sp. TB41. Metabolomics 10:42–51. CrossRefGoogle Scholar
  73. Rondón J, Gómez W, Ball MM, Melfo A, Rengifo M, Balcázar W, Dávila-Vera D, Balza-Quintero A, Mendoza-Briceño RV, Yarzábal LA (2016) Diversity of culturable bacteria recovered from Pico Bolívar’s glacial and subglacial environments, at 4950 m, in Venezuelan tropical Andes. Can J Microbiol 62:1–14. CrossRefGoogle Scholar
  74. Schachtman DP, Reid RJ, Ayling SM (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 116:447–453. CrossRefPubMedPubMedCentralGoogle Scholar
  75. Scherwinski K, Grosch R, Berg G (2008) Effect of bacterial antagonists on lettuce: active biocontrol of Rhizoctonia solani and negligible, short-term effects on nontarget microorganisms. FEMS Microbiol Ecol 64:106–116CrossRefGoogle Scholar
  76. Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56CrossRefGoogle Scholar
  77. See-Too WS, Lim YL, Ee R, Convey P, Pearce DA, Yin WF, Chan KG (2016) Complete genome of Pseudomonas sp. strain L10.10, a psychrotolerant biofertilizer that could promote plant growth. J Biotechnol 222:84–85. CrossRefPubMedGoogle Scholar
  78. Selvakumar G, Joshi P, Nazim S, Mishra PK, Bisht JK, Gupta HS (2009) Phosphate solubilization and growth promotion by Pseudomonas fragi CS11RH1 (MTCC 8984) a psychrotolerant bacterium isolated from a high altitude Himalayan rhizosphere. Biologia 64:239–245CrossRefGoogle Scholar
  79. Selvakumar G, Joshi P, Suyal P, Mishra PK, Joshi GK, Bisht JK, Bhatt JC, Gupta HS (2011) Pseudomonas lurida M2RH3 (MTCC 9245), a psychrotolerant bacterium from the Uttarakhand Himalayas, solubilizes phosphate and promotes wheat seedling growth. World J Microbiol Biotechnol 27:1129–1135CrossRefGoogle Scholar
  80. Selvakumar G, Joshi P, Suyal P, Mishra PK, Joshi GK, Venugopalan R, Bisht JK, Bhatt JC, Gupta HS (2013) Rock phosphate solubilization by psychrotolerant Pseudomonas spp. and their effect on lentil growth and nutrient uptake under polyhouse conditions. Ann Microbiol 63:1353–1362CrossRefGoogle Scholar
  81. Shivaji S, Rao NS, Saisree L, Sheth V, Reddy GS, Bhargava PM (1989) Isolation and identification of Pseudomonas spp. from Schirmacher Oasis, Antarctica. Appl Environ Microbiol 55:767–770PubMedPubMedCentralGoogle Scholar
  82. Silby MW, Winstanley C, Godfrey SA, Levy SB, Jackson RW (2011) Pseudomonas genomes: diverse and adaptable. FEMS Microbiol Rev 35:652–680CrossRefGoogle Scholar
  83. Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3:a001438. CrossRefPubMedPubMedCentralGoogle Scholar
  84. Spiers AJ, Buckling A, Rainey PB (2000) The causes of Pseudomonas diversity. Microbiology 146:2345–2350CrossRefGoogle Scholar
  85. Trivedi P, Pandey A (2007) Low temperature phosphate solubilization and plant growth promotion by psychrotrophic bacteria, isolated from Indian Himalayan Region. Res J Microbiol 2:454–461. CrossRefGoogle Scholar
  86. Trivedi P, Sa T (2008) Pseudomonas corrugata (NRRL B-30409) mutants increased phosphate solubilization, organic acid production and plant growth at lower temperatures. Curr Microbiol 56:140–144CrossRefGoogle Scholar
  87. Trivedi P, Pandey A, Palni LMS (2005) Carrier based formulations of plant growth promoting bacteria suitable for use in the colder regions. World J Microbiol Biotechnol 21:941–945CrossRefGoogle Scholar
  88. Trivedi P, Kumar B, Pandey A, Palni LMS (2007) Growth promotion of rice by phosphate solubilizing bioinoculants in a Himalayan location. In: Velazquez E, Rodriguez-Barrueco C (eds) Proceedings books of first international meeting on microbial phosphate solubilization. Kluwer, Netherlands, pp 291–299CrossRefGoogle Scholar
  89. Tsavkelova EA, Klimova SY, Cherdyntseva TA, Netrusov AI (2006) Microbial producers of plant growth stimulators and their practical use: a review. Appl Biochem Microbiol 42:117–126CrossRefGoogle Scholar
  90. Vacheron J, Desbrosses G, Bouffaud M-L, Touraine B, Moënne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dyé F, Prigent-Combaret C (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci. CrossRefPubMedPubMedCentralGoogle Scholar
  91. Vega NWO (2007) A review on beneficial effects of rhizosphere bacteria on soil nutrient availability and plant nutrient uptake. Rev Fac Nac Agron Medellin 60:3621–3643Google Scholar
  92. Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571. CrossRefGoogle Scholar
  93. Wu X, Monchy S, Taghavi S, Zhu W, Ramos J, van der Lelie D (2011) Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida. FEMS Microbiol Rev 35:299–323CrossRefGoogle Scholar
  94. Paulin MM, Filion M (2013) Engineering the rhizosphere for agricultural and environmental sustainability. In: Gupta VK et al (eds) Applications of microbial engineering. CRC Press, Boca Raton, pp 251–271. CrossRefGoogle Scholar
  95. Yadav AN, Sachan SG, Verma P, Saxena AK (2015a) Prospecting cold deserts of north western Himalayas for microbial diversity and plant growth promoting attributes. J Biosci Bioeng 119:683–693. CrossRefPubMedGoogle Scholar
  96. Yadav AN, Sachan SG, Verma P, Tyagi SP, Kaushik R, Saxena AK (2015b) Culturable diversity and functional annotation of psychrotrophic bacteria from cold desert of Leh Ladakh (India). World J Microbiol Biotechnol 31:95–108. CrossRefPubMedGoogle Scholar
  97. Yan ZN, Reddy MS, Ryu CM, McInroy JA, Wilson M, Kloepper JW (2002) Induced systemic protection against tomato late blight elicited by plant growth-promoting rhizobacteria. Phytopathology 92:1329–1333CrossRefGoogle Scholar
  98. Yarzábal LA (2014) Cold-tolerant phosphate-solubilizing microorganisms and agriculture development in mountainous regions of the world. In: Khan MS et al (eds) Phosphate solubilizing microorganisms. Springer, Switzerland, pp 113–135Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Luis Andrés Yarzábal
    • 1
    • 2
    Email author
  • Lorena Monserrate
    • 3
  • Lenys Buela
    • 1
    • 4
  • Eduardo Chica
    • 5
  1. 1.Universidad Católica de Cuenca, Unidad de Salud y BienestarCuencaEcuador
  2. 2.Laboratorio de Microbiología Molecular y BiotecnologíaFacultad de Ciencias, Universidad de Los AndesMéridaVenezuela
  3. 3.ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Biotechnological Research Center of EcuadorGuayaquilEcuador
  4. 4.Facultad de Farmacia y Bioanálisis, Universidad de Los AndesMéridaVenezuela
  5. 5.Carrera de Ingeniería Agronómica, Facultad de Ciencias Agropecuarias, Universidad de CuencaCuencaEcuador

Personalised recommendations