Skip to main content

Advertisement

Log in

Hemoparasites and immunological parameters in Snow Bunting (Plectrophenax nivalis) nestlings

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Knowledge on hemoparasites and immunological parameters in wild birds with Arctic distribution is limited. In this study, we chose the Snow Bunting (Plectrophenax nivalis) as model species to address this issue. Using nestlings, we aimed at (i) detecting hemoparasites with vector-borne transmission (via microscopic and molecular methods) and nest-dwelling ectoparasites and at (ii) exploring the relationship between several immunological parameters and parasitism. Nestlings were infected by Lankesterella parasites but hemoparasites of the genera Plasmodium, Haemoproteus, Leucocytozoon, Trypanosoma, Hepatozoon or Babesia were not found. This result may indicate the lack of suitable dipteran vectors or the inability of haemosporidians to reproduce in the Arctic region. Inflammation in response to the phytohaemagglutinin (PHA) injection was negatively related to infection by Lankesterella and positively related to weight gain in nestlings. The number of leukocytes and IgG level were not related to infection or PHA response, although the relationship between IgG level and PHA immune response was marginally significant. Besides, nestlings reared in mite-infected nests showed higher IgG level than those reared in mite-free nests. Taken together, (i) the positive relationship between PHA response/weight gain and PHA response/IgG level could reflect the nestlings’ nutritional status; and (ii) the higher IgG level in nestlings reared in mite-infected nests may be the result of a specific immune response to mite antigens. Different parasites may alter distinct immunological parameters in birds breeding under extreme weather conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adamo SA (2004) How should behavioural ecologists interpret measurements of immunity? Anim Behav 68:1443–1449

    Article  Google Scholar 

  • Alonso-Alvarez C, Tella JL (2001) Effects of experimental food restriction and body-mass changes on the avian T-cell-mediated immune response. Can J Zool 79:101–105

    Article  Google Scholar 

  • Badás EP, Martínez J, Rivero-de Aguilar J, Stevens M, van der Velde M, Komdeur J, Merino S (2017) Eggshell pigmentation in the blue tit: male quality matters. Behav Ecol Sociobiol 71:57

    Article  Google Scholar 

  • Badás EP, Martínez J, Rivero-de Aguilar J, Ponce C, Stevens M, Merino S (2018) Colour change in a structural ornament is related to individual quality, parasites and mating patterns in the blue tit. Sci Nat 105:17

    Article  CAS  Google Scholar 

  • Barbosa A, Moreno E (2004) Cell-mediated immune response affects food intake but not body mass: an experiment with wintering Great Tits. Ecoscience 11:305–309

    Article  Google Scholar 

  • Barbosa A, Palacios MJ (2009) Health of antarctic birds: a review of their parasites, pathogens and diseases. Polar Biol 32:1095–1115

    Article  Google Scholar 

  • Barbosa A, Merino S, Benzal J, Martínez J, García-Fraile S (2007) Geographic variation in the immunoglobulin levels in pygoscelid penguins. Polar Biol 30:219–225

    Article  Google Scholar 

  • Barton K (2016) MuMIn: multi-model inference. R package version 1.15.6. https://CRAN.R-project.org/package=MuMIn

  • Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  • Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MH, White JS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135

    Article  PubMed  Google Scholar 

  • Brommer JE, Pitala N, Siitari H, Kluen E, Gustafsson L (2011) Body size and immune defense of nestlings Blue Tits (Cyanistes caeruleus) in response to manipulation of ectoparasites and food supply. Auk 128:556–563

    Article  Google Scholar 

  • Bryan K, Gallucci T, Moldenhauer R (1978) First record of the Snow Bunting for Texas USA. Am Birds 32:1070

    Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, NewYork

    Google Scholar 

  • Burnham KP, Anderson DR, Huyvaert KP (2011) AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav Ecol Sociobiol 65:23–35

    Article  Google Scholar 

  • Calder PC (2007) Immunological parameters: what do they mean? J Nutr 137:773–780

    Article  Google Scholar 

  • Campbell RW, Vanderraay BM (1985) First breeding record of the Snow Bunting for British-Columbia. Wilson Bull 97:128–129

    Google Scholar 

  • Coulson SJ (2007) Terrestrial and freshwater invertebrate fauna of the High Arctic archipelago of Svalbard. Zootaxa 1448:41–68

    Google Scholar 

  • Criado A, Martinez J, Buling A, Barba JC, Merino S, Jefferies R, Irwin PJ (2006) New data on epizootiology and genetics of piroplasms based on sequences of small ribosomal subunit and cytochrome b genes. Vet Parasitol 142:238–247

    Article  PubMed  CAS  Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Swart RL, Ross PS, Vos JG, Osterhaus A (1996) Impaired immunity in harbor seals (Phoca vitulina) exposed to bioaccumulated environmental contaminants: review of a long-term feeding study. Environ Health Persp 104:823–826

    Article  Google Scholar 

  • Deerenberg C, Apanius V, Daan S, Bos N (1997) Reproductive effort decreases antibody responsiveness. Proc R Soc Lond B 264:1021–1029

    Article  Google Scholar 

  • Dolnik OV, Loonen MJJE (2007) Isospora plectrophenaxia n. sp (Apicomplexa: Eimeriidae), a new coccidian parasite found in Snow Bunting (Plectrophenax nivalis) nestlings on Spitsbergen. Parasitol Res 101:1617–1619

    Article  PubMed  Google Scholar 

  • Earle RA, Underhill LG (1993) Absence of hematozoa in some Charadriiformes breeding in the Taimyr Peninsula, Russia. Ardea 81:21–24

    Google Scholar 

  • Encyclopedia of life (2018) http://eol.org/pages/1052768/details. Accessed Jan 2018

  • Fossøy F, Stokke BG, Kåsi TK, Dyrset K, Espmark Y, Hoset KS, Wedege MI, Moksnes A (2015) Reproductive success is strongly related to local and regional climate in the Arctic snow bunting (Plectrophenax nivalis). Polar Biol 38:393–400

    Article  Google Scholar 

  • Goto N, Kodama H, Okada K, Fujimoto Y (1978) Suppression of phytohemagglutinin skin response in thymectomised chickens. Poultry Sci 57:246–250

    Article  CAS  Google Scholar 

  • Griffiths R, Double MC, Orr K, Dawson RJG (1998) A DNA test to sex most birds. Mol Ecol 7:1071–1075

    Article  PubMed  CAS  Google Scholar 

  • Gwiazdowicz JD, Coulson SJ, Grytnes JA, Pilskog HE (2012) The bird ectoparasite Dermanyssus hirundinis (Acari, Mesostigmata) in the High Artic; a new parasitic mite to Spitsbergen, Svalbard. Acta Parasitol 4:378–384

    Google Scholar 

  • Hågvar S, Heller K, Greve L (2007) Lycoriella postconspicua Mohrig, 1985 (Sciaridae, Diptera) new to Svalbard and records of some other Diptera from Svalbard. Nor J Entomol 54:65–68

    Google Scholar 

  • Halekoh U, Højsgaard S (2014) A Kenward-Roger approximation and parametric bootstrap methods for tests in linear mixed models—the R package pbkrtest. J Stat Softw 59:1–32

    Article  Google Scholar 

  • Harrington D, Din HM, Guy J, Robinson K, Sparagano O (2009) Characterization of the immune response of domestic fowl following immunization with proteins extracted from Dermanyssus gallinae. Vet Parasitol 160:285–294

    Article  PubMed  CAS  Google Scholar 

  • Harrington D, Robinson K, Sparagano OA (2010) Immune responses of the domestic fowl to Dermanyssus gallinae under laboratory conditions. Parasitol Res 106:1425–1434

    Article  PubMed  Google Scholar 

  • Hofstad E, Espmark Y, Moksnes A, Haugan T, Ingebrigtsen M (2002) The relationship between song performance and male quality in snow buntings (Plectrophenax nivalis). Can J Zool 80:524–531

    Article  Google Scholar 

  • Hoset K, Espmark Y, Moksnes A, Haugan T, Ingebritsen M, Lier M (2004) Effect of ambient temperature on food provisioning and reproductive success in Snow Bunting (Plectrophenax nivalis) in the high Arctic. Ardea 92:239–246

    Google Scholar 

  • Hoset K, Espmark Y, Lier M, Haugan T, Wedege M, Moksnes A (2009) The effects of male mating behaviour and food provisioning on breeding success in Snow Buntings Plectrophenax nivalis in the high Arctic. Polar Biol 32:1649–1656

    Article  Google Scholar 

  • Hu GZ, Yang SJ, Hu WX, Wen Z, He D, Zeng LF, Xiang Q, Wu XM, Zhou WY, Zhu QX (2016) Effect of cold stress on immunity in rats. Exp Ther Med 11:33–42

    Article  PubMed  CAS  Google Scholar 

  • Hussell DJT (1985) On the adaptative basis for hatching asynchrony: brood reduction, nest failure and asynchronous hatching in Snow Buntings. Ornis Scand 16:205–212

    Article  Google Scholar 

  • Jia-Wei C, De-Meng R, Lin Z (2014) The Snow Bunting found in Jiangsu province. Chin J Zool 49:327

    Google Scholar 

  • Johnsen TS, Zuk M (1999) Parasites and tradeoffs in the immune response of female red jungle fowl. Oikos 86:487–492

    Article  Google Scholar 

  • Johnson JB, Omland KS (2004) Model selection in ecology and evolution. Trends Ecol Evol 19:101–108

    Article  PubMed  Google Scholar 

  • Katona P, Katona-Apte J (2008) The interaction between nutrition and infection. Clin Infect Dis 10:1582–1588

    Article  Google Scholar 

  • Kennedy MW, Nager RG (2006) The perils and prospects of using phytohaemagglutinin in evolutionary ecology. Trends Ecol Evol 21:653–655

    Article  PubMed  Google Scholar 

  • Kenward MG, Roger JH (1997) Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 53:983–997

    Article  PubMed  CAS  Google Scholar 

  • Laird M (1961) A lack of avian and mammalian haematozoa in Antarctic and Canadian Arctic. Can J Zool 39:209–213

    Article  Google Scholar 

  • LaPointe DA, Goff ML, Atkinson CT (2010) Thermal constraints to the sporogonic development and altitudinal distribution of avian malaria Plasmodium relictum in Hawaii. J Parasitol 96:318–324

    Article  PubMed  Google Scholar 

  • Liao W, Atkinson CT, LaPointe DA, Samuel MD (2017) Mitigating future avian malaria threats to Hawaiian forest birds from climate change. PLoS ONE 12:1

    Google Scholar 

  • Lindenfors P, Nunn CL, Jones KE, Cunningham AA, Sechrest W, Gittleman JL (2007) Parasite species richness in carnivores: effects of host body mass, latitude, geographical range and population density. Glob Ecol Biogeogr 16:496–509

    Article  Google Scholar 

  • Lochmiller RL, Vestey MR, Boren JC (1993) Relationship between protein nutritional status and immunocompetence in northern bobwhite chicks. Auk 3:503–510

    Article  Google Scholar 

  • Lyon BE, Montgomerie RD (1985) Incubation feeding in snow buntings: female manipulation or indirect male parental care? Behav Ecol Sociobiol 17(279):284

    Google Scholar 

  • Martin LB, Scheuerlein A, Wikelski M (2003) Immune activity elevates energy expenditure of house sparrows: a link between direct and indirect costs? Proc R Soc Lond B 270:153–158

    Article  Google Scholar 

  • Martínez J, Tomás G, Merino S, Arriero E, Moreno J (2003) Detection of serum immunoglobulins in wild birds by direct ELISA: a methodological study to validate the technique in different species using antichicken antibodies. Funct Ecol 17:700–706

    Article  Google Scholar 

  • Martínez J, Martínez-de la Puente J, Herrero J, del Cerro S, Lobato E, de Aguilar Rivero-, Vásquez RA, Merino S (2009) A restriction site to differentiate Plasmodium and Haemoproteus infections in birds: on the inefficiency of general primers for detection of mixed infections. Parasitology 136:713–722

    Article  PubMed  CAS  Google Scholar 

  • Martínez J, Vásquez RA, Marqués A, Díez-Fernández A, Merino S (2016) The prevalence and molecular characterisation of blood parasites infecting the vulnerable Tamarugo Conebill (Conirostrum tamarugense) and other bird species in Pampa del Tamarugal, Chile. Emu 116:310–314

    Article  Google Scholar 

  • Marzocchi JF (1978) First observation of the Snow Bunting Plectrophenax nivalis. New record in Corsica France. Alauda 46:97–98

    Google Scholar 

  • Megía-Palma R, Martínez J, Merino S (2014) Molecular characterization of hemococcidia genus Schellackia (Apicomplexa) reveals the polyphyletic origin of the family Lankesterellidae. Zool Scr 43:304–312

    Article  Google Scholar 

  • Merino S, Potti J, Moreno J (1996) Maternal effort mediates the prevalence of trypanosomes in the offspring of a passerine bird. Proc Natl Acad Sci USA 93:5726–5730

    Article  PubMed  CAS  Google Scholar 

  • Merino S, Potti J, Fargallo JA (1997) Blood parasite of some passerine birds from central Spain. J Wildl Dis 3:638–641

    Article  Google Scholar 

  • Merino S, Martínez J, Møller AP, Sanabria L, de Lope F, Pérez J, Rodríguez-Caabeiro F (1999) Phytohaemagglutinin injection assay and physiological stress in nestling house martins. Anim Behav 58:219–222

    Article  PubMed  CAS  Google Scholar 

  • Merino S, Møller AP, de Lope F (2000) Seasonal changes in cell-mediated immunocompetence and mass gain in nestlings barn swallows: a parasite-mediated effect? Oikos 90:327–332

    Article  Google Scholar 

  • Merino S, Martínez J, Martínez-de la Puente J, Criado-Fornelio A, Tomás G, Morales J, Lobato E, García-Fraile S (2006) Molecular characterization of the 18S rDNA gene of an avian Hepatozoon reveals that it is closely related to Lankesterella. J Parasitol 92:1330–1335

    Article  PubMed  CAS  Google Scholar 

  • Moreno J, Lobato E, Morales J, Merino S, Martinez-de La Puente J, Tomas G (2008) Pre-laying nutrition mediates maternal effects on offspring immune capacity and growth in the pied flycatcher. Oecologia 156:727–735

    Article  PubMed  Google Scholar 

  • Nakagawa S, Freckleton RP (2011) Model averaging, missing data and multiple imputation: a case study for behavioural ecology. Behav Ecol Sociobiol 65:103–116

    Article  Google Scholar 

  • Nethersole-Thompson D (1966) The Snow Bunting, 1st edn. Oliver and Boyd, Edinburgh

    Google Scholar 

  • Norwegian Meteorological Institute (2012) http://retro.met.no/observasjoner/svalbard/SvalbardLufthavn/index.html. Accessed Feb 2012

  • Nunn CL, Altizer SM, Sechrest W, Cunningham AA (2005) Latitudinal gradients of parasite species richness in primates. Divers Distrib 11:249–256

    Article  Google Scholar 

  • Owen JP, Clayton DH (2007) Where are the parasites in the PHA response? Trends Ecol Evol 22:228–229

    Article  PubMed  Google Scholar 

  • Owen JP, Moore FR (2008) Relationship between energetic condition and indicators of immune function in thrushes during spring migration. Can J Zool 86:638–647

    Article  CAS  Google Scholar 

  • Pap PL, Vagasi CI, Czirjak GA, Titilincu A, Pintea A, Osvath G, Fueloep A, Barta Z (2011) The effect of coccidians on the condition and immune profile of molting house sparrows (Passer domesticus). Auk 128:330–339

    Article  Google Scholar 

  • Pigeon G, Belisle M, Garant D, Cohen AA, Pelietier F (2013) Ecological immunology in a fluctuating environment: an integrative analysis of tree swallow nestling immune defense. Ecol Evol 3:1091–1103

    Article  PubMed  PubMed Central  Google Scholar 

  • Podmokla E, Dubiec A, Drobniak SM, Arct A, Gustafsson L, Cichon M (2014) Avian malaria is associated with increased reproductive investment in the blue tit. J Avian Biol 45:219–224

    Article  Google Scholar 

  • Powell J, Borchers AT, Yoshida S, Gershwin ME (2000) Evaluation of the immune system in the nutritionally at-risk host. In: Gershwin ME, German JB, Keen CL (eds) Nutrition and immunology: principles and practice. Springer, Berlin, pp 21–31

    Chapter  Google Scholar 

  • R core team (2015) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna. http://www.R-project.org/

  • Råberg L, Grahn M, Hasselquist D, Svensson E (1998) On the adaptive significance of stress-induced immunosuppression. Proc Roy Soc Lond B 265:1637–1641

    Article  Google Scholar 

  • Råberg L, Nilsson J-Å, Ilmonen P, Stjernman M, Hasselquist D (2000) The cost of an immune response: vaccination reduces parental effort. Ecol Lett 3:382–386

    Article  Google Scholar 

  • Rising J, Jaramillo A, Copete JL, Madge S, Ryan P (2011) Familia Emberizidae (Buntings and New World Sparrows). In: del Hoyo J, Elliott A, Christie D (eds) Handbook of the birds of the world: tanagers to new world blackbirds. Lynx Edicions, Barcelona, p 894

    Google Scholar 

  • Rohde K (1999) Latitudinal gradients in species diversity and Rapoport’s rule revisited: a review of recent work and what can parasites teach us about the causes of the gradients? Ecography 22:593–613

    Article  Google Scholar 

  • Romero LM, Soma KK, O’Reilly KM, Suydam R, Wingfield JC (1998) Hormones and territorial behavior during breeding in snow buntings (Plectrophenax nivalis): an arctic-breeding songbird. Horm Behav 33:40–47

    Article  PubMed  CAS  Google Scholar 

  • Ryzhanovsky VN (2015) Comparative ecology of horned lark Eremophila alpestris flava Gm. and snow bunting Plectrophenax nivalis L. in subarctic and arctic zones. Contemp Probl Ecol 8:309–316

    Article  Google Scholar 

  • Serrano-Davies E, Sanz JJ (2017) Habitat structure modulates nestling diet composition and fitness of Blue Tits Cyanistes caeruleus in the Mediterranean region. Bird Study 64:295–305

    Article  Google Scholar 

  • Shao F, Lin WJ, Wang WW, Washington WC, Zheng L (2003) The effect of emotional stress on the primary humoral immunity of rats. J Psychopharmacol 17:179–183

    Article  PubMed  CAS  Google Scholar 

  • Smits JE, Williams TD (1999) Validation of immunotoxicology techniques in passerine chicks exposed to oil sands tailings water. Ecotox Environ Safe 44:105–112

    Article  CAS  Google Scholar 

  • Smits JE, Bortolotti GR, Tella JL (1999) Simplifying the phytohaemagglutinin skin-testing technique in studies of avian immunocompetence. Funct Ecol 13:567–572

    Article  Google Scholar 

  • Sugiura N (1978) Further analysts of the data by akaike’ s information criterion and the finite corrections. Commun Stat-Theor Methods 7:13–26

    Article  Google Scholar 

  • Szép T, Møller AP (1999) Cost of parasitism and host immune defence in the sand martin Riparia riparia: a role for parent–offspring conflict? Oecologia 119:9–15

    Article  PubMed  Google Scholar 

  • Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56:564–577

    Article  PubMed  CAS  Google Scholar 

  • Valkiunas G (2004) Avian malaria parasites and other Haemosporidia. CRC Press, Taylor and Francis Group, Boca Raton

    Book  Google Scholar 

  • Verbeke G, Molenberghs G (2000) Linear mixed modes for longitudinal data. Springer, New York

    Google Scholar 

  • Voltsit OV (1997) New faunistic records of the ixodid ticks from eastern regions of Russia in collections of the Zoological Museum of the Moscow State University. Description of the nymph of Ixodes (Monoixodes) maslovi. Parazitologiya 31:265–268

    Google Scholar 

  • Wojczulanis-Jakubas K, Svoboda A, Kruszewicz A, Johnsen A (2010) No evidence of blood parasites in Little Auks (Alle alle) breeding on Svalbard. J Wildl Dis 46:574–578

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been funded by project CTM2010-11387 of the Ministry of Science and Innovation (Spain). The fieldwork was carried out with the support of the Group of research of Prof. Arne Moksnes of the Norwegian University of Science and Technology. The University Center in Svalbard (UNIS) gave logistical support for the processing and conservation of samples. Yolanda Jimenez carried out the immunoglobulin analyses. Permissions to carry out field work were given by the Norwegian Animal Research Authority and the Governor of Svalbard.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Martínez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Supplementary material 2 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez, J., Merino, S., Badás, E.P. et al. Hemoparasites and immunological parameters in Snow Bunting (Plectrophenax nivalis) nestlings. Polar Biol 41, 1855–1866 (2018). https://doi.org/10.1007/s00300-018-2327-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-018-2327-0

Keywords

Navigation