Polar Biology

, Volume 41, Issue 9, pp 1751–1762 | Cite as

Gonadal histology and gametogenesis of the Antarctic limpet Nacella concinna (Patellogastropoda, Nacellidae) collected at Potter Cove, 25 de Mayo (King George) Island, during austral summer

  • Laura P. Dopchiz
  • Martín Ansaldo
  • Griselda Genovese
Original Paper


The limpet Nacella concinna is one of the most widely distributed gastropods along the Antarctic Peninsula. This species has been a useful tool in ecological and physiological studies for understanding Antarctic trophic interactions. Although the reproduction of limpets has been thoroughly studied, very little is known about gametogenesis in the genus Nacella. The purpose of this study is to describe the gonadal morphology and gametogenesis in N. concinna observed by light microscopy and to determine its chromosome complement. All the limpets were sexually mature at the time of sampling. Oocytes were separated by trabeculae with abundant glycogen reserves. There was a predominance of late vitellogenic oocytes. Many previtellogenic oocytes were pyriform in shape. Oogonia were clustered near the ovary wall or the trabeculae. Only two meiotic stages were found: metaphase I and anaphase I, both of which showed a regular arrangement of chromosomes. The oviduct contained mature oocytes surrounded by sperm. Testicular tubules were filled with spermatozoa. The elongated head of the spermatozoon resembles that of other Nacellidae members. One of the bivalents is heteropycnotic. The haploid complement is n = 4 and the sex determination system is XO/XX. Although N. concinna has been commonly characterized as a broadcast-spawner, its unique spawning behavior, the presence of oocytes at anaphase I and spermatozoa within the oviduct suggests internal fertilization.


Nacella concinna Gametogenesis Internal fertilization Meiosis 



We thank the staff of the Instituto Antártico Argentino for sampling assistance. We acknowledge Dr. Silvia Pietrokovsky who helped in revising the language of the manuscript. Financial support by FONCyT/DNA-IAA under grant PICTO 0091 is gratefully acknowledged.


  1. Ahn IY, Kim KW, Choi HJ (2002) A baseline study on metal concentrations in the Antarctic limpet Nacella concinna (Gastropoda: Patellidae) on King George island: variations with sex and body parts. Mar Pollut Bull 44:421–431. CrossRefGoogle Scholar
  2. Amsler MO, Huang YM, Engl W, McClintock JB, Amsler CD (2015) Abundance and diversity of gastropods associated with dominant subtidal macroalgae from the western Antarctic Peninsula. Polar Biol 38:1171–1181. CrossRefGoogle Scholar
  3. Ansaldo M, Najle R, Luquet CM (2005) Oxidative stress generated by diesel seawater contamination in the digestive gland of the Antarctic limpet Nacella concinna. Mar Environ Res 59:381–390. CrossRefPubMedGoogle Scholar
  4. Ansaldo M, Sacristán H, Wider E (2007) Does starvation influence the antioxidant status of the digestive gland of Nacella concinna in experimental conditions? Comp Biochem Physiol C 146:118–123. CrossRefGoogle Scholar
  5. Barrera Oro ER, Casaux RJ (1990) Feeding selectivity in Notothenia neglecta, Nybelin, from Potter Cove, South Shetland Island, Antarctica. Antarct Sci 2:207–213. CrossRefGoogle Scholar
  6. Benmeradi N (1992) La vitellogenese chez Patella coeruelae Lmk (Mollusca, Gasteropoda) Approche ultrastructurale. Société Française de Malacologie. Aspects Récents de la Biologie des Mollusques. Ifremer. Actes de Colloques, vol 13, pp. 39–46.
  7. Branch GM (1974) The Ecology of Patella Linnaeus from the Cape Peninsula, South Africa. 2. Reproductive cycles. Trans Roy Soc S Afr 41:111–160. CrossRefGoogle Scholar
  8. Brȇthes JC, Ferreyra G, de la Vega S (1994) Distribution, growth and reproduction of the limpet Nacella (Patinigera) concinna (Strebel 1908) in relation to potential food availability, in Esperanza Bay (Antarctic Peninsula). Polar Biol 14:161–170. CrossRefGoogle Scholar
  9. Cadée GC (1999) Shell damage and shell repair in the Antarctic limpet Nacella concinna from King George Island. J Sea Res 41:149–161. CrossRefGoogle Scholar
  10. Chen SH, Xia LP, Dahms HU, Peng X, Ying XP (2015) The ultrastructural characteristics of spermatogenesis in Onchidium struma (Pulmonata: Onchidiidae) and its functional adaptation. Ital J Zool 82:489–498. CrossRefGoogle Scholar
  11. Colas P, Dubé F (1998) Meiotic maturation in mollusc oocytes. Semin Cell Dev Biol 9:539–548. CrossRefPubMedGoogle Scholar
  12. Collado GA, Brown DI (2006) Morphology of the spermatozoon in two sympatric species of Fissurella Bruguière, 1789 (Mollusca: Vetigastropoda) from Southern Chile. Invertebr Reprod Dev 49:79–84. CrossRefGoogle Scholar
  13. Dopchiz LP, Poggio L (1999) Meiosis and pollen grain development in Isolepis cernua f. cernua (Cyperaceae). Caryologia 52:197–201. CrossRefGoogle Scholar
  14. Dreon MS, Heras H, Pollero RJ (2006) Biochemical composition, tissue origin and functional properties of egg perivitellins from Pomacea canaliculata. Biocell 30:359–365PubMedGoogle Scholar
  15. Favero M, Silva P, Ferreyra G (1997) Trophic relationships between the kelp gull and the Antarctic limpet at King George Island (South Shetland Islands, Antarctica) during the breeding season. Polar Biol 17:431–436. CrossRefGoogle Scholar
  16. Harasewych MG, McArthur AG (2000) A molecular phylogeny of the Patellogastropoda (Mollusca: Gastropoda). Mar Biol 137:183–194. CrossRefGoogle Scholar
  17. Hodgson AN (2009) Reproduction and sex in invertebrate. In: da Silva AP (ed) Reproduction and development biology. Encyclopedia of Life Support Systems. Developed under the auspices of the UNESCO, EOLSS Publishers, Paris, pp 1–27.
  18. Hodgson AN (2010) Prosobranchs with internal fertilization. In: Leonard JL, Córdoba-Aguilar A (eds) The evolution of primary sexual characters in animals. Oxford University Press, New York, pp 121–140Google Scholar
  19. Hodgson AN, Bernard RTF (1988) A comparison of the structure of the spermatozoa and spermatogenesis of 16 species of patellid limpet (Mollusca: Gastropoda: Archaeogastropoda). J Morphol 195:205–223. CrossRefPubMedGoogle Scholar
  20. Hodgson AN, Bernard RTF (1989) Spermatozoon structure and the taxonomic affinity of the limpet Nacella delesserti (Gastropoda: Patellidae). J Mollus Stud 55:145–147. CrossRefGoogle Scholar
  21. Hodgson AN, Eckelbarger KJ (2000) Ultrastructure of the ovary and oogenesis in six species of patellid limpets (Gastropoda: Patellogastropoda) from South Africa. Invertebr Biol 119:265–277. CrossRefGoogle Scholar
  22. Hodgson AN, Ridgway S, Branch GM, Hawkins SJ (1996) Spermatozoan morphology of 19 species of prosobranch limpets (Patellogastropoda) with a discussion of patellid relationships. Phil Trans R Soc Lond B 351:339–347. CrossRefGoogle Scholar
  23. Hodgson AN, Le Quesne WJF, Hawkins SJ, Bishop JDD (2007) Factors affecting fertilization success in two species of patellid limpet (Mollusca: Gastropoda) and development of fertilization kinetics models. Mar Biol 150:415–426. CrossRefGoogle Scholar
  24. Hodgson AN, Hodgson V, Eckelbarger KJ (2012) Structure and formation of the unusual sperm of Patelloida latistrigata (Mollusca: Patellogastropoda): implications for fertilization biology. Biol Bull 222:118–127. CrossRefPubMedGoogle Scholar
  25. Kessel RG (1982) Differentiation of Acmaea digitalis oocytes with special reference to lipid-endoplasmic reticulum-annulate lamellae-polyribosome relationships. J Morphol 171:225–243. CrossRefPubMedGoogle Scholar
  26. McCarthy M, Woosnam P, Culloty SC (2008) Histological investigation of the reproductive cycles of the limpets Patella vulgata and Patella ulyssiponensis. Mar Biol 153:871–877. CrossRefGoogle Scholar
  27. McNally KL, McNally FJ (2005) Fertilization initiates the transition from anaphase I to metaphase II during female meiosis in C. elegans. Dev Biol 282:218–230. CrossRefPubMedGoogle Scholar
  28. Morriconi E (1999) Reproductive biology of the limpet Nacella (P.) deaurata (Gmelin, 1791) in Bahía Lapataia (Beagle Channel). Sci Mar 63:417–426. CrossRefGoogle Scholar
  29. Najle R, Elissondo M, Gentile S, Gentile M, Vacarezza G, Solana H (2000) Histopathology of the digestive gland of an Antarctic limpet exposed to cadmium. Sci Total Environ 247:263–268. CrossRefPubMedGoogle Scholar
  30. Najmudeen TM (2008) Ultrastructural studies of oogenesis in the variable abalone Haliotis varia (Vestigastropoda: Haliotidae). Aquat Biol 2:143–151. CrossRefGoogle Scholar
  31. Neuberger-Cywiak L, Rossini M, Najle R (2009) Monitoreo ambiental basado en estudios histológicos de hepatopáncreas y gónadas en Nacella concinna (Strebel, 1908) (Gastropoda: Patellidae) (Bahía Maxwell, Antártida). IX Congress of the Society of Environmental Toxicology and Chemistry in Latin America; II Peruvian Congress of Ecotoxicology and Environmental Chemistry, Santiago de Lima, Peru.
  32. Nishikawa S (1962) A comparative study of the chromosomes in marine gastropods, with some remarks on cytotaxonomy and phylogeny. J Shimonoseki Coll Fish 11:149–186Google Scholar
  33. Niu C, Fuji A (1989) Gametogenesis and reproductive cycle of the limpet Collisella heroldi (Dunker, 1861). Bull Fac Fish Hokkaido Univ 40:214–227Google Scholar
  34. Nuñez O (1968) An acetic-haematoxylin squash method for small chromosomes. Caryologia 21:115–119. CrossRefGoogle Scholar
  35. Picken GB (1980) The distribution, growth, and reproduction of the Antarctic limpet Nacella (Patinigera) concinna (Strebel, 1908). J Exp Mar Biol Ecol 42:71–85. CrossRefGoogle Scholar
  36. Picken GB, Allan D (1983) Unique spawning behaviour by the Antarctic limpet Nacella (Patinigera) concinna (Strebel, 1908). J Exp Mar Biol Ecol 71:283–287. CrossRefGoogle Scholar
  37. Powell DK, Tyler PA, Peck LS (2001) Effect of sperm concentration and sperm ageing on fertilization success in the Antarctic soft-shelled clam Laternula elliptica and the Antarctic limpet Nacella concinna. Mar Ecol Prog Ser 215:191–200. CrossRefGoogle Scholar
  38. Prusina I, Ezgeta-Balić D, Ljubimir S, Dobroslavić T, Glamuzina B (2014) On the reproduction of the Mediterranean keystone limpet Patella rustica: histological overview. J Mar Biol Assoc UK 94:1651–1660. CrossRefGoogle Scholar
  39. Rasband WS (2017) ImageJ 1.51. U.S. National Institutes of Health, Bethesda, Maryland, USA.
  40. Reunov AA, Hodgson AN (1994) Ultrastructure of the spermatozoa of five species of South African bivalves (Mollusca), and an examination of early spermatogenesis. J Morphol 219:275–283. CrossRefPubMedGoogle Scholar
  41. Ridgway SA, Reid DG, Taylor JD, Branch GM, Hodgson AN (1998) A cladistic phylogeny of the family Patellidae (Mollusca: Gastropoda). Philos Trans R Soc Lond B 353:1645–1671. CrossRefGoogle Scholar
  42. Rocha-Barreira CA (2002) Gonad characterization and reproductive cycle of Collisella subrugosa (Orbigny, 1846) (Gastropoda: Acmaeidae) in the Northeastern Brazil. Braz J Biol 62:885–895. CrossRefPubMedGoogle Scholar
  43. Southward AJ, Dodd JM (1956) Studies on the biology of limpets: I. The late J. H. Orton’s work on Patella. J Mar Biol Assoc UK 35:145–147. CrossRefGoogle Scholar
  44. Stanwell-Smith D, Clarke A (1998) The timing of reproduction in the Antarctic limpet Nacella concinna (Strebel, 1908) (Patellidae) of Signy Island, in relation to environmental variables. J Mollus Stud 64:123–127. CrossRefGoogle Scholar
  45. Suda CNK, Vani GS, de Oliveira MF, Rodrigues E Jr, Rodrigues E, Lavrado HP (2015) The biology and ecology of the Antarctic limpet Nacella concinna. Polar Biol 38:1949–1969. CrossRefGoogle Scholar
  46. Thiriot-Quiévreux C (2003) Advances in chromosomal studies of gastropod molluscs. J Mollus Stud 69:187–202. CrossRefGoogle Scholar
  47. Valdovinos C, Rüth M (2005) Nacellidae limpets of the southern end of South America: taxonomy and distribution. Rev Chil Hist Nat 78:497–517. CrossRefGoogle Scholar
  48. Vitturi R, Rasotto MB, Farinella-Ferruzza N (1982) The chromosomes of 16 molluscan species. Boll Zool 49:61–71. CrossRefGoogle Scholar
  49. Von Stetina JR, Orr-Weaver TL (2011) Developmental control of oocyte maturation and egg activation in metazoan models. CSH Perspect Biol 3:a005553. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratorio de Ecofisiología y EcotoxicologíaInstituto Antártico ArgentinoBuenos AiresArgentina
  2. 2.Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Laboratorio de Ecotoxicología Acuática, CONICET – IBBEACiudad Autónoma de Buenos AiresArgentina

Personalised recommendations