Skip to main content

Advertisement

Log in

Correspondence between mercury and stable isotopes in high Arctic marine and terrestrial avian species from northwest Greenland

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Birds are useful bioindicators of environmental contamination around the globe, but avian studies in the high Arctic have been primarily limited to a few abundant species. This study was designed to assess mercury (Hg) concentrations in both abundant and less-abundant marine and terrestrial avian species on breeding grounds in northwest Greenland using blood sampling. Twenty-four migratory avian species (n = 625) were sampled over a three-year period (2010–2012) along 750 km of coastline near Thule Air Base (77° N, 68° W). Whole blood samples were analyzed for total Hg along with δ13C and δ15N to estimate food web position. A significant positive correlation was observed between mean Hg concentrations and trophic position, with adult mean Hg concentrations ranging from 11.4 to 1164 ng g−1 wet weight. Eleven species examined in this study had blood Hg concentrations suggestive of a low risk for Hg toxicity. Some Peregrine Falcon (Falco peregrinus), Thick-billed Murre (Uria lomvia), and Black Guillemot (Cepphus grylle) individuals had concentrations of Hg suggestive of medium risk for Hg toxicity (Hg concentrations between 1000–3000 ng g−1 ww). Decreasing δ15N values in birds from the central study area suggest a nonuniform geographic pattern of increased freshwater influx and subsequent changes in prey availability, which correspond to lower avian Hg levels. This study provides strong evidence that marine and terrestrial feeding ecology of avian species in NW Greenland contributes to their mercury exposure; however, intraspecific variation in ecology and nesting locations in the region may influence those patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ackerman JT, Eagles-Smith CA, Herzog MP, Hartman CA, Peterson SH, Evers DC, Jackson AK, Elliott JE, Vander Pol SS, Bryan CE (2016) Avian mercury exposure and toxicological risk across western North America: a synthesis. Sci Total Environ 568:749–769. https://doi.org/10.1016/j.scitotenv.2016.03.071

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Akearok JA, Hebert CE, Braune BM, Mallory ML (2010) Inter- and intraclutch variation in egg mercury levels in marine bird species from the Canadian Arctic. Sci Total Environ 408:836–840. https://doi.org/10.1016/j.scitotenv.2009.11.039

    Article  PubMed  CAS  Google Scholar 

  • Albers PH, Koterba MT, Rossmann R, Link WA, French JB, Bennett RS, Bauer WC (2007) Effects of methylmercury on reproduction in American Kestrels. Environ Toxicol Chem 26:1856–1866. https://doi.org/10.1897/06-592R.1

    Article  PubMed  CAS  Google Scholar 

  • AMAP (1998) AMAP assessment report: Arctic pollution issues. Arctic Monitoring and Assessment Programme. Oslo, Norway

  • AMAP (2009) Arctic pollution 2009. Arctic Monitoring and Assessment Programme. Oslo, Norway

  • AMAP (2011a) AMAP assessment 2011: mercury in the Arctic. Arctic Monitoring and Assessment Programme, Oslo, Norway

  • AMAP (2011b) Arctic pollution 2011. Arctic Monitoring and Assessment Programme. Oslo, Norway

  • Bardo L, Bird DM (2009) The use of captive American Kestrels (Falco sparverius) as wildlife models: a review. J Raptor Res 43:345–364. https://doi.org/10.3356/JRR-09-03.1

    Article  Google Scholar 

  • Beattie SA, Armstrong D, Chaulk A, Comte J, Gosselin M, Wang F (2014) Total and methylated mercury in Arctic multiyear sea ice. Environ Sci Technol 48:5575–5582. https://doi.org/10.1021/es5008033

    Article  PubMed  CAS  Google Scholar 

  • Boertmann D (1994) An annotated checklist to the birds of Greenland. Monog Greenl, Biosci 38:1–63

    Google Scholar 

  • Boertmann D (2007) Greenland’s Red List. Danmarks Miljøundersøgelser, Afd. for Arktisk Miljø, Aarhus Universitet

  • Boertmann DA, Mosbech A, Falk K, Kampp K (1996) Seabird colonies in western Greenland (60°–79°30´ N. lat). NERI Technical Report No. 170. National Environmental Research Institute. Copenhagen, Denmark

  • Bond AL, Diamond AW (2009a) Mercury concentrations in seabird tissues from Machias Seal Island, New Brunswick, Canada. Sci Total Environ 407:4340–4347. https://doi.org/10.1016/j.scitotenv.2009.04.018

    Article  PubMed  CAS  Google Scholar 

  • Bond AL, Diamond AW (2009b) Total and methyl mercury concentrations in seabird feathers and eggs. Arch Envrion Contam Toxicol 56:286–291

    Article  CAS  Google Scholar 

  • Braune BM (2007) Temporal trends of organochlorines and mercury in seabird eggs from the Canadian Arctic, 1975-2003. Environ Pollut 148:599–613. https://doi.org/10.1016/j.envpol.2006.11.024

    Article  PubMed  CAS  Google Scholar 

  • Braune BM, Donaldson GM, Hobson KA (2002) Contaminant residues in seabird eggs from the Canadian Arctic II. Spatial trends and evidence from stable isotopes for intercolony differences. Environ Pollut 117:133–145. https://doi.org/10.1016/S0269-7491(01)00186-5

    Article  PubMed  CAS  Google Scholar 

  • Braune BM, Outridge PM, Fisk AT, Muir DCG, Helm PA, Hobbs K, Hoekstra PF, Kuzyk ZA, Kwan M, Letcher RJ, Lockhart WL, Nordstrom RJ, Stern GA, Stirling I (2005) Persistent organic pollutants and mercury in marine biota of the Canadian Arctic: an overview of spatial and temporal trends. Sci Total Environ 351–352:4–56. https://doi.org/10.1016/j.scitotenv.2004.10.034

    Article  PubMed  CAS  Google Scholar 

  • Braune BM, Mallory ML, Gilchrist HG (2006) Elevated mercury levels in a declining population of Ivory Gulls in the Canadian Arctic. Mar Pollut Bull 52:969–987. https://doi.org/10.1016/j.marpolbul.2006.04.013

    Article  CAS  Google Scholar 

  • Braune BM, Scheuhammer AM, Crump D, Jones S, Porter E, Bond D (2012) Toxicity of methylmercury injected into eggs of Thick-billed Murres and Arctic terns. Ecotoxicol 21:2143–2152. https://doi.org/10.1007/s10646-012-0967-3

    Article  CAS  Google Scholar 

  • Braune BM, Gaston AJ, Gilchrist HG, Mallory ML, Provencher JF (2014a) A geographical comparison of mercury in seabirds in the eastern Canadian Arctic. Environ Int 66:92–96. https://doi.org/10.1016/j.envint.2014.01.027

    Article  PubMed  CAS  Google Scholar 

  • Braune BM, Gaston AJ, Hobson KA, Gilchrist HG, Mallory ML (2014b) Changes in food web structure alter trends of mercury uptake at two seabird colonies in the Canadian Arctic. Environ Sci Technol 48:13246–13252. https://doi.org/10.1021/es5036249

    Article  PubMed  CAS  Google Scholar 

  • Braune BM, Gaston AJ, Mallory ML (2016) Temporal trends of mercury in eggs of five sympatrically breeding seabird species in the Canadian Arctic. Environ Pollut 214:124–131. https://doi.org/10.1016/j.envpol.2016.04.006

    Article  PubMed  CAS  Google Scholar 

  • Burnham KK (2008) Inter- and intraspecific variation of breeding biology, movements, and genotype in Peregrine Falcon Falco peregrinus and Gyrfalcon F. rusticolus populations in Greenland. Dissertation, University of Oxford

  • Burnham JL, Burnham KK (2010) An ornithological survey of the Carey Islands, northwest Greenland. Dan Ornitol Foren Tidsskr 104:26–37

    Google Scholar 

  • Burnham KK, Burnham WA, Newton I, Johnson JA, Gosler AG (2012a) The history and range expansion of Peregrine Falcons in the Thule area, Northwest Greenland. Monogr Greenl, Biosci 60:1–106

    Google Scholar 

  • Burnham KK, Johnson JA, Konkel B, Burnham JL (2012b) Nesting Common Eider (Somateria mollissima) population quintuples in northwest Greenland. Arct 65:456–464. https://doi.org/10.14430/arctic4243

    Article  Google Scholar 

  • Burnham KK, Sinnett DR, Johnson JA, Burnham JL, Baroch JA, Konkel BW (2014) New species records and changes in abundance of waterfowl in northwest Greenland. Polar Biol 37:1289–1300. https://doi.org/10.1007/s00300-014-1520-z

    Article  Google Scholar 

  • Campbell LM, Norstrom RJ, Hobson KA, Muir DCG, Backus S, Fisk AT (2005) Mercury and other trace elements in a pelagic Arctic marine food web (Northwater Polynya, Baffin Bay). Sci Total Environ 351–352:247–263. https://doi.org/10.1016/j.scitotenv.2005.02.043

    Article  PubMed  CAS  Google Scholar 

  • Causey D, Welker JM, Burnham KK, Padula VM, Bargmann NA (2013) Fine-Scale Temporal and Spatial Patterns of a high Arctic Marine Bird Community. In: Mueter FJ, Dickson DMS, Huntington HP, Irvine JR, Logerwell EA, MacLean SA, Quakenbush LT, Rosa C (eds) Responses of Arctic marine ecosystems to climate change. University of Alaska Fairbanks, Alaska Sea Grant

    Google Scholar 

  • Chen L, Zhang Y, Jacob DJ, Soerensen AL, Fisher JA, Horowitz HM, Corbitt ES, Wang X (2015) A decline in Arctic Ocean mercury suggested by differences in decadal trends of atmospheric mercury between the Arctic and northern midlatitudes. Geophysical Res Lett 42:6076–6083. https://doi.org/10.1002/2015GL064051

    Article  CAS  Google Scholar 

  • Clayden MG, Arsenault LM, Kidd KA, O’Driscoll NJ, Mallory ML (2015) Mercury bioaccumulation and biomagnification in a small Arctic polynya ecosystem. Sci Total Environ 509–510:206–215. https://doi.org/10.1016/j.scitotenv.2014.07.087

    Article  PubMed  CAS  Google Scholar 

  • Croxall JP, Mutchart SHM, Lascelles B, Stattersfield AJ, Sullivan B, Symes A, Taylor P (2012) Seabird conservation status, threats and priority actions: a global assessment. Bird Conserv Int 22:1–34. https://doi.org/10.1017/S0959270912000020

    Article  Google Scholar 

  • Csank AZ, Czimczik CI, Xu X, Welker JM (2011) Seasonal shifts in the source and age of riverine DOC and POC in NW Greenland. American Geophysical Union, Fall Meeting 2011, abstract #B31 J-02

  • Dietz R, Riget F, Johansen P (1996) Lead, cadmium, mercury and selenium in Greenland marine animals. Sci Total Environ 186:67–93

    Article  PubMed  CAS  Google Scholar 

  • Dietz R, Johansen P, Riget F, Asmund G (1997) Data on heavy metals from Greenland before 1994: contaminants in the Greenland marine environment. In: Aarkog A, Aastrup P, Asmund G, Bjerregaard P, Boertmann D, Carlsen L, Christensen J, Cleeman M, Dietz R, Fromberg A, Storr-Hansen E, Heidam NZ, Johansen P, Larsen H, Paulsen GB, Petersen H, Pilegaard K, Poulsen ME, Pritzl G, Riget F, Skov H, Spliid H, Weihe P, Wahlin P (eds) AMAP Greenland 1994-1996. Environmental Project No. 356. Ministry of Environment and Energy, Danish Environmental Protection Agency, Copenhagen, Denmark, pp 247-350

  • Dietz R, Riget F, Cleeman M, Aarkrog A, Johansen P, Hansen JC (2000) Comparison of contaminants from different trophic levels and ecosystems. Sci Total Environ 245:221–231

    Article  PubMed  CAS  Google Scholar 

  • Dietz R, Sonne C, Basu N, Braune B, O’Hara T, Letcher RJ, Scheuhammer T, Andersen M, Andreasen C, Andriashek D, Asmund G, Aubail A, Baagøe H, Born EW, Chan HM, Derocher AE, Grandjean P, Knott K, Kirkegaard M, Krey A, Lunn N, Messier F, Obbard M, Olsen MT, Ostertag S, Peacock E, Renzoni A, Riget FF, Skaare JU, Stern G, Stirling I, Taylor M, Wiig Ø, Wilson S, Aars J (2013) What are the toxicological effects of mercury in biota? Sci Total Environ 443:775–790. https://doi.org/10.1016/j.scitotenv.2012.11.046

    Article  PubMed  CAS  Google Scholar 

  • Dyurgerov M, Bring A, Destouni G (2010) Integrated assessment of changes in freshwater inflow to the Arctic Ocean. J Geophysical Res Atmospheres 115:D12116. https://doi.org/10.1029/2009JD013060

    Article  Google Scholar 

  • Eagles-Smith CA, Ackerman JT, Yee J, Adelsbach TL (2008) Mercury demethylation in waterbird livers: dose-response thresholds and differences among species. Environ Toxicol Chem 28:568–577. https://doi.org/10.1897/08-245.1

    Article  PubMed  Google Scholar 

  • Eisler R (2010) Chapter 5 – Birds. In: Eisler R (ed) Compendium of trace metals and marine biota, vol 2. Elsevier, Amsterdam, pp 253–361

    Chapter  Google Scholar 

  • Elliott KH, Elliott JE (2016) Origin of sulfur in diet drives spatial and temporal mercury trends in seabird eggs From Pacific Canada 1968-2015. Environ Sci Technol 50:13380–13386. https://doi.org/10.1021/acs.est.6b05458

    Article  PubMed  CAS  Google Scholar 

  • Evers DC, Burgess NM, Champoux L, Hoskins B, Major A, Goodale WM, Taylor RJ, Poppenga R, Daigle T (2005) Patterns and interpretation of mercury exposure in freshwater avian communities in northeastern North America. Ecotoxicol 14:193–221

    Article  CAS  Google Scholar 

  • Evers DC, Savoy LJ, DeSorbo CR, Yates DE, Hanson W, Taylor KM, Siegel LS, Cooley JH Jr, Bank MS, Major A, Munney K, Mower BF, Vogel HS, Schoch N, Pokras M, Goodale MW, Fair J (2008) Adverse effects from environmental mercury loads on breeding Common Loons. Ecotoxicol 17:69–81. https://doi.org/10.1007/s10646-007-0168-7

    Article  CAS  Google Scholar 

  • Falk K, Antonia LD, Benvenuti S (2001) Mapping pre- and post-fledging locations of Thick-billed Murres in the North Water Polynya. Ecography 24:625–632

    Article  Google Scholar 

  • Falk K, Benvenuti S, Antonia LD, Gilchrist G, Kampp K (2002) Foraging behavior of Thick-billed Murres breeding in different sectors of the North Water polynya: an inter-colony comparison. Mar Ecol Prog Ser 231:293–302

    Article  Google Scholar 

  • Fenstad A, Bustnes J, Lierhagen S, Gabrielsen K, Ost M, Hanssen S, Moe B, Jenssen B, Krokje A (2017) Blood and feather concentrations of toxic elements in a Baltic and an Arctic seabird population. Mar Polluti Bull 114:1152–1158. https://doi.org/10.1016/j.marpolbul.2016.10.034

    Article  CAS  Google Scholar 

  • Fimreite N (1971) Effects of dietary methyl mercury on ring-necked pheasants. Canadian Wildlife Service Occasional Papers 9:1–39

    Google Scholar 

  • Fisk AT, deWit CA, Wayland M, Kuzyk ZZ, Burgess N, Letcher R, Braune B, Norstrom R, Blum SP, Sandau C, Lie E, Larsen HJS, Skaare JU, Muir DCG (2005) An assessment of the toxicological significance of anthropogenic contaminants in Canadian Arctic wildlife. Sci Total Environ 351–352:57–93. https://doi.org/10.1016/j.scitotenv.2005.01.051

    Article  PubMed  CAS  Google Scholar 

  • Fort J, Robertson GJ, Grémillet D, Traisnel G, Bustamante P (2014) Spatial ecotoxicology: migratory Arctic seabirds are exposed to mercury contamination while overwintering in the northwest Atlantic. Environ Sci Technol 48:11560–11567. https://doi.org/10.1021/es504045g

    Article  PubMed  CAS  Google Scholar 

  • Frandsen MS, Fort J, Rigét FF, Galatius A, Mosbech A (2014) Composition of chick meals from one of the main Little Auk (Alle alle) breeding colonies in northwest Greenland. Polar Biol 37:1055–1060. https://doi.org/10.1007/s00300-014-1491-0

    Article  Google Scholar 

  • Frederiksen M, Mosbech A, Merkel F, Johansen KL, Clausen DS (2017) Breeding biology of Thick-billed Murres and Black-legged Kittiwakes in the Eastern Baffin Bay assessment area. In: Arboe NH, Batty P, Blicher ME, Boertmann D, Born EW, Boye T, Clausen DS, Dietz R, Frederiksen M, Fritt-Rasmussen J, Gustavson, K, Hansen J, Heide-Jørgensen MP, Høgslund S, Johansen KL, Josefson A, Jørgensen OA, Krause-Jensen D, Laidre KL, Loya W, Lyngs P, Merkel F, Mosbech A, Mouritsen KN, Møller EF, Nygaard R, Nymand J, Olesen B, Rosing-Asvid A, Rigét, F, Rysgaard S, Sejr MK, Siegstad H, Simon M, Tairova Z, Thyrring J, Tougaard J, Ugarte F, Wegeberg S (eds) Baffin Bay. Scientific Report from the Danish Centre for Environment and Energy No. 2018. Aarhus University, Demark, pp 98-99

  • Gaston AJ, Bradstreet MSW (1993) Intercolony difference in the summer diet of Thick-billed Murres in the eastern Canadian Arctic. Can J Zool 71:1831–1840. https://doi.org/10.1139/z93-261

    Article  Google Scholar 

  • Gerrard PM, St. Louis VL (2001) The effects of experimental reservoir creation on the bioaccumulation of methylmercury and reproductive success of Tree Swallows (Tachycineta bicolor). Environ Sci Technol 35:1329–1338. https://doi.org/10.1021/es001537f

    Article  PubMed  CAS  Google Scholar 

  • Glahder CM, Asmund G, Mayer P, Lassen P, Strand J, Riget F (2003) Marin ecipientundersøgelseved Thule Air Base 2002. Danmarks Miljøundersøgelser. 126 s. -Faglig rapport fra DMU nr. 449. http://www.dmu.dk/1_viden/2_Publikationer/3_fagrapporter/rapporter/FR449.pdf

  • Gorman ML, Milne H (1971) Seasonal changes in the adrenal steroid tissue of the Common Eider Somateria mollissima and its relation to organic metabolism in normal and oil-polluted birds. Ibis 113:218–228

    Article  Google Scholar 

  • Goutte A, Barbraud C, Herzke D, Bustamante P, Angelier F, Tartu S, Clement-Chastel C, Moe B, Bech C, Gabrielsen G (2015) Survival rate and breeding outputs in a high Arctic seabird exposed to legacy persistent organic pollutants and mercury. Environ Pollut 200:1–9. https://doi.org/10.1016/j.envpol.2015.01.033

    Article  PubMed  CAS  Google Scholar 

  • Harding AMA, Hobson KA, Walkusz W, Dmoch K, Karnovsky NJ, Van Pelt TI, Lifjeld JT (2008) Can stable isotope (δ13C and δ15N) measurements of Little Auk (Alle alle) adults and chicks be used to track changes in high-Arctic marine foodwebs? Polar Biol 31:725–733. https://doi.org/10.1007/s00300-008-0413-4

    Article  Google Scholar 

  • Hargreaves AL, Whiteside DP, Gilchrist G (2010) Concentrations of 17 elements, including mercury, and their relationship to fitness measures in Arctic shorebirds and their eggs. Sci Total Environ 408:3153–3161. https://doi.org/10.1016/j.scitotenv.2010.03.027

    Article  PubMed  CAS  Google Scholar 

  • Heinz GH (1976) Methyl mercury: second-Generation Reproductive and Behavioral Effects on Mallard Ducks. J Wildl Manag 40:710–715

    Article  CAS  Google Scholar 

  • Heinz GH, Hoffman DJ (2004) Mercury accumulation and loss in Mallard eggs. Environ Toxicol Chem 23:222–224

    Article  PubMed  CAS  Google Scholar 

  • Heinz GH, Hoffman DJ, Klimstra JD, Stebbins KR, Kondrad SL, Erwin CA (2009) Species differences in the sensitivity of avian embryos to methylmercury. Arch Environ Contam Toxicol 56:129–138. https://doi.org/10.1007/s00244-008-9160-3

    Article  PubMed  CAS  Google Scholar 

  • Hobson KA, Clark RG (1992) Assessing avian diets using stable isotopes I: turnover of 13C in tissues. Condor 94:181–188

    Article  Google Scholar 

  • Hobson KA, Fisk A, Karnovsky N, Holst M, Gagnon JM, Fortier M (2002) A stable isotope (δ13C, δ15N) model for the North Water food web; implications for evaluating tropodynamics and the flow of energy and contaminants. Deep Sea Res II 49:5131–5150

    Article  CAS  Google Scholar 

  • Jackson AK, Evers DC, Folsom SB, Condon AM, Diener J, Goodrick LF, McGann AJ, Schmerfeld J, Cristol DA (2011) Mercury exposure in terrestrial birds far downstream of an historical point source. Environ Pollut 159:3302–3308. https://doi.org/10.1016/j.envpol.2011.08.046

    Article  PubMed  CAS  Google Scholar 

  • Jaeger I, Hop H, Gabrielsen GW (2009) Biomagnification of mercury in selected species from an Arctic marine food web in Svalbard. Sci Total Environ 407:4744–4751. https://doi.org/10.1016/j.scitotenv.2009.04.004

    Article  PubMed  CAS  Google Scholar 

  • Jakubas D, Iliszko L, Wojczulanis-Jakubas K, Stempniewicz L (2012) Foraging by Little Auks in the distant marginal sea ice zone during chick-rearing period. Polar Biol 35:73–81. https://doi.org/10.1007/s00300-011-1034-x

    Article  Google Scholar 

  • Johnston V, Syroechkovskiy E, Crockford N, Lanctot RB, Millington S, Clay R, Donaldson G, Ekker M, Gilchrist G, Black A, Crawford R (2015) Arctic Migratory Birds Initiative (AMBI): Workplan 2015-2019. CAFF Strategies Series No. 6. Conservation of Arctic Flora and Fauna, Akureyri, Iceland

  • Karnovsky NJ, Hobson KA, Iverson S, Hunt GL Jr (2008) Seasonal changes in diets of seabirds in the North Water Polynya: a multiple-indicator approach. Mar Ecol Prog Ser 357:291–299. https://doi.org/10.3354/meps07295

    Article  Google Scholar 

  • Kokubun N, Takahashi A, Ito M, Matsumoto K, Kitaysky AS, Watanuki Y (2010) Annual variation in the foraging behavior of Thick-billed Murres in relation to upper-ocean thermal structure around St. George Island. Bering Sea. Aquat Biol 8:289–298. https://doi.org/10.3354/ab00243

    Article  Google Scholar 

  • Lavoie RA, Jardine TD, Chumchal MM, Kidd KA, Campbell LM (2013) Biomagnification of mercury in aquatic food webs: a worldwide meta-analysis. Environ Sci Technol 47:13385–13394. https://doi.org/10.1021/es403103t

    Article  PubMed  CAS  Google Scholar 

  • Lewis SA, Furness RW (1993) The role of eggs in mercury excretion by Quail Coturnix coturnix and the implications for monitoring mercury pollution by analysis of feathers. Ecotoxicol 2:55–64. https://doi.org/10.1007/BF00058214

    Article  CAS  Google Scholar 

  • Lyngs P (2003) Migration and winter ranges of birds in Greenland: an analysis of ringing recoveries. Dan Ornitologisk Forenings Tidsskr 97:1–167

    Google Scholar 

  • Mallory ML, Braune BM (2012) Tracking contaminants in seabirds of Arctic Canada: temporal and spatial insights. Mar Pollut Bull 64:1475–1484. https://doi.org/10.1016/j.marpolbul.2012.05.012

    Article  PubMed  CAS  Google Scholar 

  • Mallory ML, Braune BM (2017) Do concentration in eggs and liver tissue tell the same story of temporal trends of mercury in high Arctic seabirds? J Environ Sci. https://doi.org/10.1016/j.jes.2017.10.017

    Article  Google Scholar 

  • Mallory ML, Braune BM, Wayland M, Gilchrist HG, Dickson DL (2004) Contaminants in Common Eiders (Somateria mollissima) of the Canadian Arctic. Environ Rev 12:197–218. https://doi.org/10.1139/a05-004

    Article  CAS  Google Scholar 

  • Monteiro LR, Furness RW (2001) Kinetics, dose-response, and excretion of methylmercuy in free-living adult Cory’s Shearwaters. Environ Sci Technol 35:739–746

    Article  PubMed  CAS  Google Scholar 

  • Morrison RIG, Hobson KA (2003) Use of body stores in shorebirds after arrival on high Arctic breeding grounds. Auk 121:333–344

    Article  Google Scholar 

  • Nielsen CO, Dietz R (1989) Heavy metals in Greenland seabirds. Monogr Greenl, Biosci 29:3–26

    Google Scholar 

  • NOAA (2016) National Oceanic and Atmospheric Administration National Centers for Environmental Information. www.ncdc.noaa.gov. Accessed 12 May 2016

  • Obrist D, Agnan Y, Jiskra M, Olson CL, Colegrove DP, Hueber J, Moore CW, Sonke JE, Helmig D (2017) Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution. Nat 547:201–204. https://doi.org/10.1038/nature22997

    Article  CAS  Google Scholar 

  • Parker H, Holm H (1990) Patterns of nutrient and energy expenditure in female Common Eiders nesting in the high Arctic. Auk 107:660–668

    Article  Google Scholar 

  • Pedersen CE, Falk K (2001) Chick diet of Dovekies Alle alle in Northwest Greenland. Polar Biol 24:53–58

    Article  Google Scholar 

  • Perkins M, Ferguson L, Lanctot RB, Stenhouse IJ, Kendall S, Brown S, Gates HR, Hall JO, Regan K, Evers DC (2016) Mercury exposure and risk in breeding and staging Alaskan shorebirds. Condor 118:571–582. https://doi.org/10.1650/CONDOR-16-36.1

    Article  Google Scholar 

  • Provencher JF, Gaston AJ, O’Hara PDO, Gilchrist HG (2012) Seabird diet indicates changing Arctic marine communities in eastern Canada. Mar Ecol Prog Ser 454:171–182. https://doi.org/10.3354/meps09299

    Article  Google Scholar 

  • Provencher JF, Mallory ML, Braune BM, Forbes MR, Gilchrist HG (2014) Mercury and marine birds in Arctic Canada: effects, current trends, and why we should be paying closer attention. Environ Rev 22:244–255. https://doi.org/10.1139/er-2013-0072

    Article  CAS  Google Scholar 

  • Provencher JF, Forbes MR, Hennin HL, Love OP, Braune BM, Mallory ML, Gilchrist HG (2016) Implications of mercury and lead concentrations on breeding physiology and phenology in an Arctic bird. Environ Pollut 218:1014–1022. https://doi.org/10.1016/j.envpol.2016.08.052

    Article  PubMed  CAS  Google Scholar 

  • Ramos R, Ramírez F, Jover L (2013) Trophodynamics of inorganic pollutants in a wide-range feeder: the relevance of dietary inputs and biomagnification in the Yellow-legged Gull (Larus michahellis). Environ Pollut 172:235–242. https://doi.org/10.1016/j.envpol.2012.09.014

    Article  PubMed  CAS  Google Scholar 

  • Riget F, Dietz R (2000) Temporal trends of cadmium and mercury in Greenland marine biota. Sci Total Environ 245:49–60. https://doi.org/10.1016/S0048-9697(99)00432-5

    Article  PubMed  CAS  Google Scholar 

  • Riget FF, Dietz R, Johansen P, Asmund G (1997) Heavy metals in the Greenland marine environment, AMAP results 1994 and 1995. In: Aarkog A, Aastrup P, Asmund G, Bjerregaard P, Boertmann D, Carlsen L, Christensen J, Cleeman M, Dietz R, Fromberg A, Storr-Hansen E, Heidam NZ, Johansen P, Larsen H, Paulsen GB, Petersen H, Pilegaard K, Poulsen ME, Pritzl G, Riget F, Skov H, Spliid H, Weihe P, Wahlin P (eds) AMAP Greenland 1994-1996. Environmental Project No. 356. Ministry of Environment and Energy, Danish Environmental Protection Agency. Copenhagen, Denmark, pp 351–407

  • Riget F, Dietz R, Johansen P, Asmund G (2000) Lead, cadmium, mercury and selenium in Greenland marine biota and sediments during AMAP phase 1. Sci Total Environ 245:3–14. https://doi.org/10.1016/S0048-9697(99)00429-5

    Article  PubMed  CAS  Google Scholar 

  • Riget F, Dietz R, Vorkamp K, Johansen P, Muir D (2004) Levels and spatial and temporal trends of contaminants in Greenland biota: an updated review. Sci Total Environ 331:29–52. https://doi.org/10.1016/j.scitotenv.2004.03.022

    Article  PubMed  CAS  Google Scholar 

  • Riget F, Braune B, Bignert A, Wilson S, Aars J, Born E, Dam M, Dietz R, Evans M, Evans T, Gamberg M, Gantner N, Green N, Gunnlaugsdottir H, Kannan K, Letcher R, Muir D, Roach P, Sonne C, Stern G, Wiig O (2011) Temporal trends of Hg in Arctic biota, an update. Sci Total Environ 409:3520–3526. https://doi.org/10.1016/j.scitotenv.2011.05.002

    Article  PubMed  CAS  Google Scholar 

  • Rimmer CC, McFarland KP, Evers DC, Miller EK, Aubry Y, Busby D, Taylor RJ (2005) Mercury concentration in Bicknell’s Thrush and other insectivorous passerines in montane forests of northeastern North America. Ecotoxicol 14:223–240

    Article  CAS  Google Scholar 

  • Roby DD, Brink KL, Nettleship DN (1981) Measurements, chick meals and breeding distribution of Dovekies (Alle alle) in northwest Greenland. Arctic 34:241–248. https://doi.org/10.14430/arctic2526

    Article  Google Scholar 

  • Rubega MA, Schamel D, Tracy DM (2000) Red-necked Phalarope (Phalaropus lobatus). In: Poole A (ed) The birds of North America Online. Ithaca: Cornell Lab of Ornithology. http://bna.birds.cornell.edu/bna/species/538. Accessed 10 Mar 2017

  • Salomonsen F (1950) The birds of Greenland. Munksgaard, Copenhagen

    Google Scholar 

  • Savoy L (2004) 2003 Common loon population survey and management report: a summary of the reproductive success and assessment of the potential impacts of methlymercury on the common loon in Massachusetts, 1975-2003. Report BRI 2004-15 BioDiversity Research Institute. Falmouth, Maine

  • Scheuhammer A, Braune B, Chan HM, Frouin H, Krey A, Letcher R, Loseto L, Noël M, Ostertag S, Ross P, Wayland M (2015) Recent progress on our understanding of the biological effects of mercury in fish and wildlife in the Canadian Arctic. Sci Total Environ 509–510:91–103. https://doi.org/10.1016/j.scitotenv.2014.05.142

    Article  PubMed  CAS  Google Scholar 

  • Selin N (2009) Global biogeochemical cycling of mercury: a review. Annu Rev Environ Resour 34:43–63. https://doi.org/10.1146/annurev.environ.051308.084314

    Article  Google Scholar 

  • Sonne C (2010) Health effects from long-range transported contaminants in Arctic top predators: an integrated review based on studies of polar bears and relevant model species. Environ Int 36:461–491. https://doi.org/10.1016/j.envint.2010.03.002

    Article  PubMed  CAS  Google Scholar 

  • Tartu S, Goutte A, Bustamante P, Angelier F, Moe B, Clément-Chastel C, Bech C, Gabrielsen GW, Bustnes JO, Chastel O (2013) To breed or not to breed: endocrine response to mercury contamination by an Arctic seabird. Biol Lett 9:1–4. https://doi.org/10.1098/rsbl.2013.0317

    Article  Google Scholar 

  • Tartu S, Bustamante P, Angelier F, Lendvai ÁZ, Moe B, Blévin P, Bech C, Gabrielsen GW, Bustnes JO, Chastel O (2015) Mercury exposure, stress and prolactin secretion in an Arctic seabird: an experimental study. Funct Ecol 30:596–604. https://doi.org/10.1111/1365-2435.12534

    Article  Google Scholar 

  • Wassmann P (2011) Arctic marine ecosystems in an era of rapid climate change. Prog Oceanogr 90:1–17. https://doi.org/10.1016/j.pocean.2011.02.002

    Article  Google Scholar 

  • Wayland M, Scheuhammer AM (2011) Cadmium in birds. In: Beyer WN, Meador JP (eds) Environmental contaminants in biota. CRC Press, New York, pp 645–668

    Chapter  Google Scholar 

  • Wayland M, Garcia-Fernandez AJ, Neugebauer E, Gilchrist HG (2001) Concentrations of cadmium, mercury, and selenium in blood, liver, and kidney of common eider ducks from the Canadian Arctic. Environ Monit Assess 71:255–267

    Article  PubMed  CAS  Google Scholar 

  • Wayland M, Drake KL, Alisauskas RT, Kellett DK, Traylor J, Swoboda C, Mehl K (2008) Survival rates and blood metal concentrations in two species of free-ranging North American sea ducks. Environ Toxicol Chem 27:698–704

    Article  PubMed  CAS  Google Scholar 

  • Wolfe MF, Schwarzbach S, Sulaiman RA (1998) Effects of mercury on wildlife: a comprehensive review. Environ Toxicol Chem 17:146–160

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Field and laboratory assistance was provided by B. Konkel, C. Offield, R. Biesterfeld, C. Behnke, N. Bargmann, S. Schulwitz, S. Capodice, V. Padula, D. Causey, and J. Stephens. This work was supported by the AAG Anne U. White Award, Augustana College, C. Offield and the Offield Family Foundation, Wolf Creek Charitable Trust, the University of North Texas, R.O. Mutch, Patagonia, P. Burnham, J. Stephens, and the many others who have donated to the High Arctic Institute. The analyses were made possible in part by a National Science Foundation Major Research Instrumentation award (0953271) to J. Welker that established the University of Alaska Anchorage Stable Isotope Laboratory. We thank the Greenland Home Rule Government for permissions to conduct scientific research in Greenland and the United States Air Force and Danish Liaison Office for access to Thule Air Base. Additional thanks go to Polar Field Service, the 109th Air National Guard, the National Science Foundation, and the Idaho Bureau of Land Management for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer Horwath Burnham.

Ethics declarations

Conflict of interests

The authors declare that they have no conflicts of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burnham, J.H., Burnham, K.K., Chumchal, M.M. et al. Correspondence between mercury and stable isotopes in high Arctic marine and terrestrial avian species from northwest Greenland. Polar Biol 41, 1475–1491 (2018). https://doi.org/10.1007/s00300-018-2302-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-018-2302-9

Keywords

Navigation