The importance of understanding annual and shorter-term temperature patterns and variation in the surface levels of polar soils for terrestrial biota

  • P. Convey
  • S. J. Coulson
  • M. R. Worland
  • A. Sjöblom
Original Paper

Abstract

Ground temperatures in the top few centimetres of the soil profile are key in many biological processes yet remain very poorly documented, especially in the polar regions or over longer timescales. They can vary greatly seasonally and at various spatial scales across the often highly complex and heterogeneous polar landscapes. It is challenging and often impossible to extrapolate soil profile temperatures from meteorological air temperature records. Furthermore, despite the justifiably considerable profile given to contemporary large-scale climate change trends, with the exception of some sites on Greenland, few biological microclimate datasets exist that are of sufficient duration to allow robust linkage and comparison with these large-scale trends. However, it is also clear that the responses of the soil-associated biota of the polar regions to projected climate change cannot be adequately understood without improved knowledge of how landscape heterogeneity affects ground and sub-surface biological microclimates, and of descriptions of these microclimates and their patterns and trends at biologically relevant physical and temporal scales. To stimulate research and discussion in this field, we provide an overview of multi-annual temperature records from 20 High Arctic (Svalbard) and maritime Antarctic (Antarctic Peninsula and Scotia Arc) sites. We highlight important features in the datasets that are likely to have influence on biology in polar terrestrial ecosystems, including (a) summer ground and sub-surface temperatures vary much more than air temperatures; (b) winter ground temperatures are generally uncoupled from air temperatures; (c) the ground thawing period may be considerably shorter than that of positive air temperatures; (d) ground and air freeze–thaw patterns differ seasonally between Arctic and Antarctic; (e) rates of ground temperature change are generally low; (f) accumulated thermal sum in the ground usually greatly exceeds air cumulative degree days. The primary purpose of this article is to highlight the utility and biological relevance of such data, and to this end the full datasets are provided here to enable further analyses by the research community, and incorporation in future wider comparative studies.

Keywords

Terrestrial invertebrates Plants Microbiota Arctic Antarctic Energy exchange 

Notes

Acknowledgements

We thank students taking UNIS course AB:201 Arctic Terrestrial Biology and Erlend Lorentzen (Norwegian Polar Institute) for assistance in setting out and/or recovering loggers, and the Kinnvika International Polar Year project for access and logistics to Nordaustlandet. Image of Mars Oasis (Online Resource 2) kindly provided by Kevin Newsham (British Antarctic Survey). Paul Geissler, Alison Massey and Kevin Newsham are gratefully acknowledged for the long-term maintenance and management of the Antarctic stations described. Figure 1 was kindly drawn by Oliva Martin-Sanchez (Mapping and Geographic Information Centre, British Antarctic Survey). Project work in Barentsburg was funded as part of the AVIFauna project (Norwegian Research Council 6172/S30). PC and MRW were supported by core funding from NERC to the BAS ‘Ecosystems’ and ‘Biodiversity, Evolution and Adaptation’ Programmes. This paper also contributes to the SCAR AnT-ERA and AntEco programmes. We thank the Norwegian Meteorological Institute (www.eKlima.no) and the CLEOPATRA project for access to air temperature data, and two anonymous referees and the issue Editor for helpful comments.

Supplementary material

300_2018_2299_MOESM1_ESM.docx (12 kb)
Supplementary material 1 (DOCX 11 kb)
300_2018_2299_MOESM2_ESM.doc (82 kb)
Supplementary material 2 (DOC 82 kb)
300_2018_2299_MOESM3_ESM.tif (3.3 mb)
Supplementary material 3 (TIFF 3355 kb)
300_2018_2299_MOESM4_ESM.tif (3.2 mb)
Supplementary material 4 (TIFF 3324 kb)
300_2018_2299_MOESM5_ESM.tif (2.4 mb)
Supplementary material 5 (TIFF 2503 kb)
300_2018_2299_MOESM6_ESM.xlsx (14.2 mb)
Supplementary material 6 (XLSX 14507 kb)
300_2018_2299_MOESM7_ESM.pdf (70.6 mb)
Supplementary material 7 (PDF 72252 kb)

References

  1. ACIA (2004) Impacts of a warming Arctic: Arctic climate impact assessment. Cambridge University Press, CambridgeGoogle Scholar
  2. Aitchison C (1979) Winter-active subnivean invertebrates in southern Canada. 1. Collembola. Pedobiologia 19:113–120Google Scholar
  3. Arnold RJ, Convey P (1998) The life history of the world’s most southerly diving beetle, Lancetes angusticollis (Curtis) (Coleoptera: dytiscidae), on sub-Antarctic South Georgia. Polar Biol 20:153–160CrossRefGoogle Scholar
  4. Ávila-Jiménez ML, Coulson SJ (2011) Can snow depth predict the distribution of the high Arctic aphid Acyrthosiphon svalbardicum (Hemiptera: aphididae) on Spitsbergen? BMC Ecol 11:25CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bale JS, Hayward SAL (2010) Insects overwintering in a changing climate. J Exp Biol 213:980–994CrossRefPubMedGoogle Scholar
  6. Bateni SM, Margulis SA, Podest E, McDonald KC (2015) Characterizing snowpack and the freeze-thaw state of underlying soil via assimilation of multifrequency passive/active microwave data: a case study (NASA CLPX 2003) IEEE. T Geosci Remote 53:173–189CrossRefGoogle Scholar
  7. Blaire S, Leveille R, Pollard WH, Whyte LG (2006) Microbial ecology and biodiversity in permafrost. Extremophiles 10:259–267CrossRefGoogle Scholar
  8. Bokhorst S, Huiskes A, Aerts R, Convey P, Cooper EJ, Dalen L, Erschbamer B, Gudmundsson J, Hofgaard A, Hollister RD, Johnstone J, Jónsdóttir IS, Lebouvier M, Van De Vijver B, Wahren CH, Dorrepaal E (2013) Variable temperature effects of Open Top Chambers at polar and alpine sites explained by irradiance and snow depth. Glob Change Biol 19:64–74CrossRefGoogle Scholar
  9. Cahoon SMP, Sullivan PF, Shaver GR, Welker JM, Post E (2012) Interactions among shrub cover and the soil microclimate may determine future Arctic carbon budgets. Ecol Lett 15:1415–1422CrossRefPubMedGoogle Scholar
  10. Christiansen HH, Etzelmuller B, Isaksen K, Juliussen H, Farbrot H, Humlum O, Johansson M, Ingeman-Nielsen T, Kristensen L, Hjort J, Holmlund P, Sannel ABK, Sigsgaard C, Akerman HJ, Foged N, Blikra LH, Pernosky MA, Odegard RS (2010) The thermal state of permafrost in the Nordic area during the International Polar Year 2007-2009. Permafr Periglac 21:156–181CrossRefGoogle Scholar
  11. Cockell CS, Cordoba-Jabonero C (2004) Coupling of climate change and biotic UV exposure through changing snow-ice covers in terrestrial habitats. Photochem Photobiol 79:26–31PubMedGoogle Scholar
  12. Convey P (1996) Overwintering strategies of terrestrial invertebrates from Antarctica - the significance of flexibility in extremely seasonal environments. Eur J Entomol 93:489–505Google Scholar
  13. Convey P (2011) Antarctic terrestrial biodiversity in a changing world. Polar Biol 34:1629–1641CrossRefGoogle Scholar
  14. Convey P (2013) Antarctic Ecosystems. In: Levin S (ed) Encyclopedia of biodiversity. Elsevier, San Diego, pp 179–188CrossRefGoogle Scholar
  15. Convey P, Smith RIL (1997) The terrestrial arthropod fauna and its habitats in northern Marguerite Bay and Alexander Island, maritime Antarctic. Antarct Sci 9:12–26CrossRefGoogle Scholar
  16. Convey P, Worland MR (2000) Refining the risk of freezing mortality for Antarctic terrestrial microarthropods. Cryo-Lett 21:333–338Google Scholar
  17. Convey P, Bindschadler RA, di Prisco G, Fahrbach E, Gutt J, Hodgson DA, Mayewski P, Summerhayes CP, Turner J (2009) Antarctic climate change and the environment. Antarct Sci 21:541–563CrossRefGoogle Scholar
  18. Convey P, Abbandonato HDA, Bergan F, Beumer LT, Biersma EM, Bråthen VS, D’Imperio L, Jensen CK, Nilsen S, Paquin K, Stenkewitz U, Svoen ME, Winkler J, Müller E, Coulson SJ (2014a) Survival of rapidly fluctuating natural low winter temperatures by Arctic soil invertebrates. J Therm Biol.  https://doi.org/10.1016/j.jtherbio.2014.07.009 Google Scholar
  19. Convey P, Chown SL, Clarke A, Barnes DKA, Cummings V, Ducklow H, Frati F, Green TGA, Gordon S, Griffiths H, Howard-Williams C, Huiskes AHL, Laybourn-Parry J, Lyons B, McMinn A, Peck LS, Quesada A, Schiaparelli S, Wall D (2014b) The spatial structure of Antarctic biodiversity. Ecol Monogr 84:203–244CrossRefGoogle Scholar
  20. Cooper EJ (2004) Out of sight, out of mind: thermal acclimation of root respiration in Arctic Ranunculus. Arct Antarct Alp Res 36:308–313CrossRefGoogle Scholar
  21. Cooper EJ (2015) Warmer shorter winters disrupt Arctic terrestrial ecosystems. Annu Rev Ecol Evol Syst 45:71–95Google Scholar
  22. Coulson SJ, Hodkinson ID, Strathdee AT, Block W, Webb NR, Bale JS, Worland MR (1995) Thermal environments of Arctic ground organisms during winter. Arct Alp Res 27:365–371CrossRefGoogle Scholar
  23. Coulson SJ, Leinaas HP, Ims RA, Søvik G (2000) Experimental manipulation of the winter surface ice layer: the effects on a High Arctic ground microarthropod community. Ecography 23:299–314CrossRefGoogle Scholar
  24. Coulson SJ, Fjellberg A, Gwiazdowicz DJ, Lebedeva NV, Melekhina EN, Solhøy T, Erséus C, Maraldo K, Miko L, Schatz H, Schmelz RM, Søli G, Stur E (2013a) Introduction of invertebrates into the high Arctic via imported soils: the case of Barentsburg in Svalbard. Biol Invasions 15:1–5CrossRefGoogle Scholar
  25. Coulson SJ, Fjellberg A, Gwiazdowicz DJ, Lebedeva NV, Melekhina EN, Solhøy T, Erséus C, Maraldo K, Miko L, Schatz H, Schmelz RM, Søli G, Stur E (2013b) The invertebrate fauna of anthropogenic soils in the high Arctic settlement of Barentsburg. Svalbard. Polar Res 32:19273CrossRefGoogle Scholar
  26. Coulson SJ, Convey P, Aakra K, Aarvik L, Ávila-Jiménez ML, Babenko A, Biersma E, Boström S, Brittain J, Carlsson AM, Christoffersen KS, De Smet WH, Ekrem T, Fjellberg A, Füreder L, Gustafsson D, Gwiazdowicz DJ, Holmstrup M, Hansen LO, Holmstrup M, Kaczmarek L, Kolicka M, Kuklin V, Lakka H-K, Lebedeva N, Makarova O, Maraldo K, Melekhina E, Ødegaard F, Pilskog HE, Simon JC, Sohlenius B, Solhøy T, Søli G, Stur E, Tanaevitch A, Taskaeva A, Velle G, Zawierucha K, Zmudczyńska-Skarbek K (2014) The terrestrial and freshwater invertebrate biodiversity of the archipelagoes of the Barents Sea; Svalbard, Franz Josef Land and Novaya Zemlya. Soil Biol Biochem 68:440–470CrossRefGoogle Scholar
  27. Davey MC, Pickup J, Block W (1992) Temperature variation and its biological significance in fellfield habitats on a maritime Antarctic island. Antarct Sci 4:383–388CrossRefGoogle Scholar
  28. Everatt MJ, Bale JS, Convey P, Worland MR, Hayward SAL (2013) The effect of acclimation temperature on thermal activity thresholds in polar terrestrial invertebrates. J Insect Physiol 59:1057–1064CrossRefPubMedGoogle Scholar
  29. Fick SE, Hijmans RJ (2017 In press). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol Google Scholar
  30. Førland EJ, Benestad R, Hanssen-Bauer I, Haugen JE, Skaugen TE (2011) Temperature and precipitation development at Svalbard 1900–2100. Adv Meteorol 2011:893790CrossRefGoogle Scholar
  31. Geiger R, Aron RH, Todhunter P (2003) The climate near the ground. Rowman and Littlefield, LanhamGoogle Scholar
  32. Governor of Svalbard (2014) Handlingsplan mot skadelige fremmede arter på Svalbard (in Norwegian). Sysselmannen på Svalbard, LongyearbyenGoogle Scholar
  33. Guglielmin M, Ellis-Evans CJ, Cannone N (2008) Active layer thermal regime under different vegetation conditions in permafrost areas. A case study at Signy Island (Maritime Antarctica). Geoderma 144:73–85CrossRefGoogle Scholar
  34. Guglielmin M, Worland MR, Cannone N (2012) Spatial and temporal variability of ground surface temperature and active layer thickness at the margin of maritime Antarctica, Signy Island. Geomorphology 155:20–33CrossRefGoogle Scholar
  35. Hansen BB, Isaksen K, Benestad RE, Kohler J, Pedersen ÅØ, Loe LE, Coulson SJ, Larsen JO, Varpe Ø (2014) Warmer, wetter, wilder winters: characteristics and implications of an extreme weather event in the High Arctic. Environ Res Lett 9:114021CrossRefGoogle Scholar
  36. Heilbronn TD, Walton DWH (1984) The morphology of some periglacial features on South Georgia and their relationship to local environment. Br Antarct Surv Bull 64:21–36Google Scholar
  37. Hisdal V (1985) Geography of Svalbard. Norwegian Polar Institute, OsloGoogle Scholar
  38. Hodkinson ID (2003) Metabolic cold adaptation in arthropods: a smaller-scale perspective. Funct Ecol 17:562–567CrossRefGoogle Scholar
  39. Hughes KA, Worland MR, Thorne MAS, Convey P (2013) The non-native chironomid Eretmoptera murphyi in Antarctica: erosion of the barriers to invasion. Biol Invasions 15:269–281CrossRefGoogle Scholar
  40. IPCC (2014) Climate change 2014: synthesis report. International panel on climate change. http://ipcc.ch/pdf/assessment-report/ar5/syr/SYR_AR5_LONGERREPORT.pdf. Accessed 3/11/14, 2014
  41. Jagdhuber T, Stockamp J, Hajnsek I, Ludwig R (2014) Identification of soil freezing and thawing states using SAR polarimetry at C-band. Remote Sens 6:2008–2023CrossRefGoogle Scholar
  42. Jensen LM, Topp-Jørgensen E, Christensen TR, Schmidt NM (eds) (2016) Zackenberg Ecological Research Operations 20th Annual Report, 2014. Aarhus University, DCE – Danish Centre for Environment and Energy. pp. 134. http://zackenberg.dk/fileadmin/user_upload/ZERO_2015_web_1_Feb_17.pdf)
  43. Jónsdóttir IS (2005) Terrestrial ecosystems on Svalbard: heterogeneity, complexity and fragility from an Arctic island perspective. P Roy Irish Acad B 105:155–165CrossRefGoogle Scholar
  44. Karger DN, Conrad O, Böhner J et al (2017) Climatologies at high resolution for the earth’s land surface areas. Sci Data 4:170122CrossRefPubMedPubMedCentralGoogle Scholar
  45. Kim S, Singh VP (2014) Modeling daily soil temperature using data-driven models and spatial distribution. Theor Appl Climatol 118:465–479CrossRefGoogle Scholar
  46. King JC, Bannister D, Hosking JS, Colwell SR (2017) Causes of the Antarctic region record high temperature at Signy Island, 30th January 1982. Atmos Sci Let.  https://doi.org/10.1002/asl.793 Google Scholar
  47. Kohler J, Aanes R (2004) Effect of winter snow and ground-icing on a Svalbard reindeer population: results of a simple snowpack model. Arct Antarct Alp Res 36:333–341CrossRefGoogle Scholar
  48. Kurylyk BL, MacQuarrie KTB, McKenzie JM (2014) Climate change impacts on groundwater and soil temperatures in cold and temperate regions: implications, mathematical theory, and emerging simulation tools. Earth Sci Rev 138:313–334CrossRefGoogle Scholar
  49. Larsen KS, Jonasson S, Michelsen A (2002) Repeated freeze–thaw cycles and their effects on biological processes in two arctic ecosystem types. Appl Soil Ecol 21:187–195CrossRefGoogle Scholar
  50. Leinaas HP (1981) Activity of arthropoda in snow within a coniferous forest, with special reference to Collembola. Holarct Ecol 4:127–138Google Scholar
  51. Lenoir J, Hattab T, Pierre G (2017) Climatic refugia under anthropogenic climate change: implications for species redistribution. Ecography 40:253–266CrossRefGoogle Scholar
  52. Lund M, Stiegler C, Abermann J, Citterio M, Hansen BU, van As D (2017) Spatiotemporal variability in surface energy balance across tundra, snow and ice in Greenland. Ambio 46(suppl 1):81–93CrossRefPubMedPubMedCentralGoogle Scholar
  53. Meltofte H, Huntington HP, Barry T (2013) Introduction. In: Meltofte H (ed) Arctic Biodiversity Assessment. Status and trends in Arctic biodiversity: Synthesis. Conservation of Arctic Flora and Fauna (CAFF), Arctic Council. Arctic Council, Akureyri, pp 9–17Google Scholar
  54. Migała K, Wojtuń B, Szymański W, Muskała P (2014) Soil moisture and temperature variation under different types of tundra vegetation during the growing season: a case study from the Fuglebekken catchment, SW Spitsbergen. CATENA 116:10–18CrossRefGoogle Scholar
  55. Morgner E, Elberling B, Strebel D, Cooper EJ (2010) The importance of winter in annual ecosystem respiration in the High Arctic: effects of snow depth in two vegetation types. Polar Res 29:58–74CrossRefGoogle Scholar
  56. Nielsen UN, Wall D (2013) The future of soil invertebrate communities in polar regions: different climate change responses in the Arctic and Antarctic? Ecol Lett 16:409–419CrossRefPubMedGoogle Scholar
  57. Nowinski NS, Taneva L, Trumbore SE, Welker JM (2010) Decomposition of old organic matter as a result of deeper active layers in a snow depth manipulation experiment. Oecologia 163:785–792CrossRefPubMedPubMedCentralGoogle Scholar
  58. Oberbauer SF, Tweedie CE, Welker JM, Fahnestock JT, Henry GRH, Webber PJ, Hollister RD, Walker MD, Kuchy A, Elmore E, Starr G (2007) Tundra CO2 fluxes in response to experimental warming across latitudinal and moisture gradients. Ecol Monogr 77:221–238CrossRefGoogle Scholar
  59. Overland JE, Wang M, Bond NA, Walsh JE, Kattsov VM, Chapman WL (2011) Considerations in the selection of global climate models for regional climate projections: the Arctic as a case study. J Clim 24:1583–1597CrossRefGoogle Scholar
  60. Pauli JN, Zuckerberg B, Whiteman JP, Porter W (2013) The subnivium: a deteriorating seasonal refugium. Front Ecol Environ 11:260–267CrossRefGoogle Scholar
  61. Peck LS (2004) Physiological flexibility: the key to success and survival for Antarctic fairy shrimps in highly fluctuating extreme environments. Freshwater Biol 49:1195–1205CrossRefGoogle Scholar
  62. Peck LS, Convey P, Barnes DKA (2006) Environmental constraints on life histories in Antarctic ecosystems: tempos, timings and predictability. Biol Rev 81:75–109CrossRefPubMedGoogle Scholar
  63. Przybylak R, Araźny A, Nordli Ø, Finkelnburg R, Kejna M, Budzik T, Migała S, Sikora S, Puczko D, Rymerg K, Rachlewiczg G (2014) Spatial distribution of air temperature on Svalbard during 1 year with campaign measurements. Int J Climatol 34:3702–3719CrossRefGoogle Scholar
  64. Putkonen J, Roe G (2003) Rain-on-snow events impact soil temperatures and affect ungulate survival. Geophys Res Lett 30:4CrossRefGoogle Scholar
  65. Rautio M, Dufresne F, Laurion I, Bonilla S, Warwick SV, Christoffersen KS (2011) Shallow freshwater ecosystems of the circumpolar Arctic. EcoScience 18:204–222CrossRefGoogle Scholar
  66. Schmidt IK (1999) Mineralization and microbial immobilization of N and P in arctic soils in relation to season, temperature and nutrient amendment. Appl Soil Ecol 11:147–160CrossRefGoogle Scholar
  67. Schroeter B, Green TGA, Pannewitz S, Schlensog M, Sancho LG (2011) Summer variability, winter dormancy: lichen activity over 3 years at Botany Bay, 77°S latitude, continental Antarctica. Polar Biol 34:13–22CrossRefGoogle Scholar
  68. Sjöblom A (2014) Turbulent fluxes of momentum and heat over land in the High-Arctic summer: the influence of observation techniques. Polar Res 33:21567CrossRefGoogle Scholar
  69. Slavich E, Warton DI, Ashcroft MB, Gollan JR, Ramp D (2014) Topoclimate versus macroclimate: how does climate mapping methodology affect species distribution models and climate change projections? Divers Distrib 20:952–963CrossRefGoogle Scholar
  70. Smith RIL (1988) Recording bryophyte microclimate in remote and severe environments In: Glime J.M. (ed) Methods in Bryology. Proceedings of the Bryological Methods Workshop, Mainz. Hattori Botanical Laboratory, Nichinan, pp 275-284Google Scholar
  71. SWIPA (2011) Snow, water, ice and permafrost in the Arctic (SWIPA). Arctic monitoring and assessment programme (AMAP), Oslo, NorwayGoogle Scholar
  72. Tabari H, Talaee PH, Willems P (2014) Short-term forecasting of soil temperature using artificial neural network. Meteorol Appl 22:576–585CrossRefGoogle Scholar
  73. Toro M, Camacho A, Rochera C, Rico E, Banon M, Fernandez-Valiente E, Marco E, Justel A, Avendano MC, Ariosa Y, Vincent WF, Quesada A (2007) Limnological characteristics of the freshwater ecosystems of Byers Peninsula, Livingston Island, in maritime Antarctica. Polar Biol 30:635–649CrossRefGoogle Scholar
  74. Turner J, Bindschadler R, Convey P, di Prisco G. Fahrbach E, Gutt J, Hodgson D, Mayewski P, Summerhayes C (eds.) (2009) Antarctic climate change and the environment. Scientific Committee on Antarctic Research, Cambridge, xi + 526 ppGoogle Scholar
  75. Turner J, Barrand NE, Bracegirdle TJ, Convey P, Hodgson DA, Jarvis M, Jenkins A, Marshall G, Meredith MP, Roscoe H, Shanklin J, French J, Goosse H, Guglielmin M, Gutt J, Jacobs S, Kennicutt MC II, Masson-Delmotte V, Mayewski P, Navarro F, Robinson S, Scambos T, Sparrow M, Summerhayes C, Speer K, Klepikov A (2014) Antarctic climate change and the environment: an update. Polar Rec 50:237–259CrossRefGoogle Scholar
  76. Vega GC, Pertierra LR, Olalla-Tárraga MÁ (2017) MERRAclim, a high-resolution global dataset of remotely sensed bioclimatic variables for ecological modelling. Sci Data 4:170078CrossRefGoogle Scholar
  77. Wagner M, Trutschnig W, Bathke AC, Ruprecht U (2017 In press) A first approach to calculate BIOCLIM variables and climate zones for Antarctica. Theor Appl ClimatolGoogle Scholar
  78. Walton DWH (1982) The Signy Island terrestrial reference sites. XV. Microclimate monitoring, 1972-74. Brit Antarct Surv Bull 55:111–126Google Scholar
  79. Wang L, Wolken GJ, Sharp MJ, Howell SEL, Derksen C, Brown RD, Markus T, Cole J (2011) Integrated pan-Arctic melt onset detection from satellite active and passive microwave measurements, 2000–2009. J Geophys Res 116:D22103Google Scholar
  80. West CC (1982) Life histories of three species of sub-Antarctic oribatid mite. Pedobiologia 23:59–67Google Scholar
  81. Westermann S, Lüers J, Langer M, Boike J (2009) The annual surface energy budget of a High-Arctic permafrost site on Svalbard. The Cryosphere 3:345–363CrossRefGoogle Scholar
  82. Westermann S, Langer M, Boike J (2011) Spatial and temporal variations of summer surface temperatures of high-arctic tundra on Svalbard — Implications for MODIS LST based permafrost monitoring. Remote Sens Environ 115:908–922CrossRefGoogle Scholar
  83. Williams CM, Henry HAL, Sinclair BJ (2015) Cold truths: how winter drives responses of terrestrial organisms to climate change. Biol Rev 90:214–235CrossRefPubMedGoogle Scholar
  84. Woods HA, Dillon ME, Pincebourde S (2015) The roles of microclimatic diversity and of behavior in mediating the responses of ectotherms to climate change. J Therm Biol 54:86–97CrossRefPubMedGoogle Scholar
  85. Worland MR, Convey P (2001) Rapid cold hardening in Antarctic microarthropods. Funct Ecol 15:515–525CrossRefGoogle Scholar
  86. Wu W, Tang XP, Guo NJ, Yang C, Liu HB, Shang YF (2013) Spatiotemporal modeling of monthly soil temperature using artificial neural networks. Theor Appl Climatol 113:481–494CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.British Antarctic Survey, NERC, High CrossCambridgeUK
  2. 2.Department of Arctic BiologyUniversity Centre in SvalbardLongyearbyenNorway
  3. 3.ArtDatabanken, The Swedish Species Information CentreSwedish University of Agricultural SciencesUppsalaSweden
  4. 4.Department of Earth SciencesUppsala UniversityUppsalaSweden

Personalised recommendations