A biodiversity survey of scavenging amphipods in a proposed marine protected area: the Filchner area in the Weddell Sea, Antarctica

Abstract

An integrative inventory of the amphipod scavenging fauna (Lysianassoidea), combining morphological identifications with DNA barcoding, is provided here for the Filchner area situated in the south-eastern Weddell Sea. Over 4400 lysianassoids were investigated for species richness and relative abundances, covering 20 different stations and using different sampling devices, including the southernmost baited traps deployed so far (76°S). High species richness was observed: 29 morphospecies of which 5 were new to science. Molecular species delimitation methods were carried out with 109 cytochrome c oxidase I gene (COI) sequences obtained during this study as well as sequences from specimens sampled in other Antarctic regions. These distance-based analyses (trees and the Automatic Barcode Gap Discovery method) indicated the presence of 42 lineages; for 4 species, several (cryptic) lineages were found. More than 96% of the lysianassoids collected with baited traps belonged to the species Orchomenella pinguides s. l. The diversity of the amphipod scavenger guild in this ice-bound ecosystem of the Weddell Sea is discussed in the light of bottom–up selective forces. In this southernmost part of the Weddell Sea, harbouring spawning and nursery grounds for silverfish and icefishes, abundant fish and mammalian food falls are likely to represent the major food for scavengers. Finally, the importance of biodiversity surveys in the context of the establishment of a marine protected area in this region (Weddell Sea MPA) is highlighted and how future studies can contribute to a better understanding the ecological role of scavengers in this system is discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Agardy T, Bridgewater P, Crosby MP, Day J, Dayton PK, Kenchington R, Laffoley D, McConney P, Murray PA, Parks JE, Peau L (2003) Dangerous targets? Unresolved issues and ideological clashes around marine protected areas. Aquat Conserv Mar Freshw Ecosyst 13:353–367. https://doi.org/10.1002/aqc.583

    Article  Google Scholar 

  2. Allcock AL, Strugnell JM (2012) Southern Ocean diversity: new paradigms from molecular ecology. Trends Ecol Evol 27:520–528

    Article  PubMed  Google Scholar 

  3. Ambroso S, Casado de Amezua P, Beyer K, Biebow H, Böhmer A, Federwisch L, Gerdes D, Havermans C, Owsianowski N, Pineda S, Sands CJ, Zapata R, Held C, Eléaume M, Gili J-M, Richter C (2014) Benthos communities. In: Knust R, Schröder M (eds) The expedition PS92 of the Research Vessel Polarstern to the southern Weddell Sea in 2013/14. Ber Polarforsch Meeresforsch, vol 680. p 64–98

  4. Andres HG (1986) Atylopsis procerus sp. n. und Cheirimedon solidus sp. n. aus der Weddell See sowie Anmerkungen zu Orchomenella pinguides Walker, 1903 (Crustacea: Amphipoda: Gammaridea). Mitt Hamb Zool Mus Inst 83:117–130

    Google Scholar 

  5. Arndt CE, Berge J, Brandt A (2005) Mouthpart-atlas of Arctic sympagic amphipods—trophic niche separation based on mouthpart morphology and feeding ecology. J Crust Biol 25:401–412

    Article  Google Scholar 

  6. Arntz W, Brey T, Gallardo V (1994) Antarctic zoobenthos. Oceanogr Mar Biol Annu Rev 32:241–304

    Google Scholar 

  7. Auel H, Dürschslag J, Janssen D, Ksionzek K, Kohlbach D, Lange B, Vortkamp M, Flores H, Graeve M, Koch B (2014) Biological and biogeochemical processes in sea ice and the pelagic realm. In: Knust R, Schröder M (eds) The expedition PS92 of the Research Vessel Polarstern to the southern Weddell Sea in 2013/14. Ber Polarforsch Meeresforsch, vol 680. p 54–60

  8. Bailey DM, King NJ, Priede IG (2007) Cameras and carcasses: historical and current methods for using artificial food falls to study deep-water animals. Mar Ecol Prog Ser 350:179–191

    Article  Google Scholar 

  9. Barnard KH (1932) Amphipoda. Discov Rep 5:1–326

    Article  Google Scholar 

  10. Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bornemann H, Oosthuizen WC, Bester MN (2014) Seal research at the Filchner Outflow System (SEAFOS). In: Knust R, Schröder M (eds) The expedition PS92 of the Research Vessel Polarstern to the southern Weddell Sea in 2013/14. Ber Polarforsch Meeresforsch, vol 680. p 115–135

  12. Boulenger GA (1902) Pisces. Report on the collections of natural history made in the Antarctic regions during the voyage of the ‘Southern Cross’. British Museum (Natural History), London, pp 174–189

    Google Scholar 

  13. Boysen-Ennen E (1987) On the distribution of meso- and macrozooplankton in the surface water of the Weddell Sea (Antarctica). Ber Polarforsch 35:1–126

    Google Scholar 

  14. Boysen-Ennen E, Piatkowski U (1988) Meso- and macrozooplankton communities in the Weddell Sea, Antarctica. Pol Biol 9:17–35

    Article  Google Scholar 

  15. Britton JC, Morton B (1994) Marine carrion and scavengers. Oceanogr Mar Biol Annu Rev 32:369–434

    Google Scholar 

  16. Brodersen J, Seehausen O (2014) Why evolutionary biologists should get seriously involved in ecological monitoring and applied biodiversity assessment programs. Evol Appl 7:968–983. https://doi.org/10.1111/eva.12215

    Article  PubMed  PubMed Central  Google Scholar 

  17. Brooks CM, Crowder LB, Curran LM, Dunbar RB, Ainley DG, Dodds KJ, Gjerde KM, Sumaila UR (2016) Science-based management in decline in the Southern Ocean. Science 354:185–187

    Article  PubMed  CAS  Google Scholar 

  18. Brown KM, Fraser KPP, Barnes DKA, Peck LS (2004) Links between the structure of an Antarctic shallow-water community and ice-scour frequency. Oecologia 141:121–129. https://doi.org/10.1007/s00442-004-1648-6

    Article  PubMed  Google Scholar 

  19. CBD (2004) Convention on biological diversity decision, COP VII/5. http://www.cbd.int/doc/decisions/cop-07/cop-07-dec-05-en.doc

  20. CBD (2010) Convention on biological diversity. Decision adopted by the conference of the parties to the convention on biological diversity at its 10th meeting, Nagoya, Japan 18–29 October. Decision X/2 The strategic plan for biodiversity 2011–2020 and the Aichi biodiversity targets

  21. CCAMLR (2005) Commission for the conservation of Antarctic marine living resources-report of the 24th meeting of the commission, Hobart, Australia 24 October–4 November 2005. Report no. CCAMLR-XXIV

  22. CCAMLR (2009) Commission for the conservation of Antarctic marine living resources-report of the 28th meeting of the commission Hobart, Australia 26 October–6 November 2009. Report no. CCAMLR-XXVIII

  23. CCAMLR (2011) Commission of the conservation of Antarctic marine living resources-report of the 30th meeting of the commission, Hobart, Australia 24 October–4 November 2011. Report no. CCAMLR-XXX

  24. CCAMLR (2012) Commission for the conservation of Antarctic marine living resources-report of the 31st meeting of the commission, Hobart, Australia 23 October–1 November 2012. Report no. CCAMLR-XXXI

  25. CCAMLR (2016) Commission for the conservation of Antarctic marine living resources-report of the 35th meeting of the commission, Hobart, Australia 17–28 October 2016. Report no. CCAMLR-XXXV

  26. Chenuil A, Saucède T, Hemery LG, Eléaume M, Féral JP, Améziane N, David B, Lecointre G, Havermans C (2018) Understanding processes at the origin of species flocks with a focus on the marine Antarctic fauna. Biol Rev 93:481–504. https://doi.org/10.1111/brv.12354

    Article  PubMed  Google Scholar 

  27. Chown SL, Brooks CM, Terauds A, Le Bohec C, van Klaveren-Imagliazzo C, Whittington JD, Butchart SHM, Coetzee BWT, Collen B, Convey P, Gaston KJ, Gilbert N, Gill M, Höft R, Johnston S, Kennicutt MC II, Kriessell HJ, Le Maho Y, Lynch HJ, Palomares M, Puig-Marcó R, Stoett P, McGeosh MA (2017) Antarctica and the strategic plan for biodiversity. PLoS Biol. https://doi.org/10.1371/journal.pbio.2001656

    PubMed  PubMed Central  Article  Google Scholar 

  28. Clarke A (2008) Antarctic marine benthic diversity: patterns and processes. J Exp Mar Biol Ecol 366:48–55. https://doi.org/10.1016/j.jembe.2008.07.008

    Article  Google Scholar 

  29. Collins RA, Boykin LM, Cruickshank RH, Armstrong KF (2012) Barcoding’s next top model: an evaluation of nucleotide substitution models for specimen identification. Methods Ecol Evol 3:457–465

    Article  Google Scholar 

  30. Costa F, DeWaard J, Boutillier J, Ratnasingham S, Dooh R, Hajibabaei M, Hebert P (2007) Biological identifications through DNA barcodes: the case of the Crustacea. Can J Fish Aquat Sci 64:272–295

    Article  CAS  Google Scholar 

  31. Costa F, Henzler C, Lunt D, Whiteley N, Rock J (2009) Probing marine Gammarus (Amphipoda) taxonomy with DNA barcodes. Syst Biodivers 7:365–379

    Article  Google Scholar 

  32. d’Udekem d’Acoz C, Robert H (2008) Systematic and ecological diversity of amphipods. In: Gutt J (ed) The expedition ANTARKTIS-XXIII/8 of the research vessel “Polarstern” in 2006/2007. Ber Polarforsch Meeresforsch 569:48–56

    Google Scholar 

  33. d’Udekem d’Acoz C, Havermans C (2012) Two new Pseudorchomene species from the Southern Ocean, with phylogenetic remarks on the genus and related species (Crustacea: Amphipoda: Lysianassoidea: Lysianassidae: Tryphosinae). Zootaxa 3310:1–50

    Google Scholar 

  34. Daneri G, Carlini A (2002) Fish prey of southern elephant seals, Mirounga leonina, at King George Island. Pol Biol 25:739–743

    Google Scholar 

  35. Darelius E, Makinson K, Daae K, Fer I, Holland PR, Nicholls KW (2014) Hydrography and circulation in the Filchner depression, Weddell Sea, Antarctica. J Geophys Res Oceans 119:5797–5814

    Article  Google Scholar 

  36. Dauby P, Scailteur Y, Chapelle G, De Broyer C (2001a) Potential impact of the main benthic amphipods on the eastern Weddell Sea shelf ecosystem (Antarctica). Pol Biol 24:657–662

    Article  Google Scholar 

  37. Dauby P, Scailteur Y, De Broyer C (2001b) Trophic diversity within the eastern Weddell Sea amphipod community. Hydrobiologia 443:69–86

    Article  Google Scholar 

  38. De Broyer C (1975) Révision du genre Adeliella (Amphipoda, Gammaridea, Lysianassidae) et description d’une nouvelle espèce antarctique. Crustaceana 28:73–85

    Article  Google Scholar 

  39. De Broyer C (1985a) Amphipodes lysianassoïdes nécrophages des îles Kerguelen (Crustacea): 1. Orchomenella guillei n.sp. Bull Mus Natl Hist Nat Paris 36:205–217

    Google Scholar 

  40. De Broyer C (1985b) Notes sur les Orchomene de l’Océan Austral. 3. Révision d’Orchomenella acanthura (Schellenberg) (Crustacea Amphipoda: Lysianassoidea). J Nat Hist 19:729–738

    Article  Google Scholar 

  41. De Broyer C, Lörz A-N, Nyssen F, Rauschert M, Cariceo Y, Rios C (2003) Biodiversity, biogeography, phylogeny and trophodynamics of amphipod and isopod crustaceans. In: Arntz WE and Brey T (eds) Expedition ANTARKTIS XIX/5 (LAMPOS) of RV “Polarstern” in 2002. Ber Polarforsch Meeresforsch 462:34–44

    Google Scholar 

  42. De Broyer C, Nyssen F, Dauby P (2004) The crustacean scavenger guild in Antarctic shelf, bathyal and abyssal communities. Deep Sea Res Part II Top Stud Oceanogr 51:1733–1752

    Article  Google Scholar 

  43. De Broyer C, Lowry JK, Jażdżewski K, Robert H (2007) Catalogue of the Gammaridean and Corophiidean Amphipoda (Crustacea) of the Southern Ocean with distribution and ecological data. In: De Broyer C (ed) Census of Antarctic marine life: synopsis of the Amphipoda of the Southern Ocean. Bull Inst R Sci Nat Belg 77:1–325

    Google Scholar 

  44. De Broyer C, Koubbi P, Griffiths HJ, Raymond B, d’Udekem d’Acoz C, Van de Putte AP, Danis B, David B, Grant S, Gutt J, Held C, Hosie G, Huettmann F, Post A, Ropert-Coudert Y (eds) (2014) Biogeographic Atlas of the Southern Ocean. Scientific Committee on Antarctic Research, Cambridge, UK, pp 328–362

  45. Duffy JE, Godwin CM, Cardinale BJ (2017) Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature. https://doi.org/10.1038/nature23886

    Article  PubMed  PubMed Central  Google Scholar 

  46. Dunlop KM, Barnes DKA, Bailey DM (2014) Variation of scavenger richness and abundance between sites of high and low iceberg scour frequency in Ryder Bay, west Antarctic Peninsula. Polar Biol 37:1741–1754

    Article  Google Scholar 

  47. Ekau W, Hubold G (1985) Fish and fish larvae Hempel G die expedition ANTARKTIS III mit FS “Polarstern“1984/85. Ber Polarforsch 25:121–129

    Google Scholar 

  48. Fišer Z, Altermatt F, Zakšek V, Knapič T, Fišer C (2015) Morphologically cryptic amphipod species are ecological clones at regional but not at local scale: a case study of four Niphargus species. PLoS ONE. https://doi.org/10.1371/journal.pone.0134384

    Article  PubMed  PubMed Central  Google Scholar 

  49. Foldvik A, Gammelsrød T, Østerhus S, Fahrbach E, Rohardt G, Schröder M, Nicholls KW, Padman W, Woodgate RA (2004) Ice shelf water overflow and bottom water formation in the southern Weddell Sea. J Geophys Res. https://doi.org/10.1029/2003JC002008

    Article  Google Scholar 

  50. Folmer O, Hoeh W, Black M, Vrijenhoek R (1994) Conserved primers for PCR amplification of mitochondrial DNA from different invertebrate phyla. Mol Mar Biol Biotechnol 3:294–299

    PubMed  CAS  Google Scholar 

  51. Fox AJ, Cooper APR (1994) Measured properties of the Antarctic ice sheet derived from the SCAR Antarctic digital database. Polar Rec 30:201–206

    Article  Google Scholar 

  52. Fraser CI, Nikula R, Ruzzante DE, Waters JM (2012) Poleward bound: biological impacts of Southern Hemisphere glaciation. Trends Ecol Evol 27:462–471

    Article  PubMed  Google Scholar 

  53. Gallacher J, Simmonds N, Fellowes H, Brown N, Gill N, Clark W, Biggs C, Rodwell L (2016) Evaluating the success of a marine protected area: a systematic review approach. J Environ Manag 183:280–293

    Article  CAS  Google Scholar 

  54. Griffiths HJ (2010) Antarctic marine biodiversity—what do we know about the distribution of life in the southern ocean? PLoS ONE. https://doi.org/10.1371/journal.pone.0011683

    Article  PubMed  PubMed Central  Google Scholar 

  55. Grosfeld K, Gerdes R (1998) Circulation beneath the Filchner ice shelf, Antarctica, and its sensitivity to changes in the oceanic environment: a case-study. Ann Glaciol 27:99–104

    Article  Google Scholar 

  56. Grosfeld K, Schröder M, Fahrbach E, Gerdes R, Mackensen A (2001) How iceberg calving and grounding change the circulation and hydrography in the Filchner ice shelf-ocean system. J Geophys Res 106:9039–9055

    Article  Google Scholar 

  57. Gutt J, Griffiths HJ, Jones CD (2013) Circumpolar overview and spatial heterogeneity of Antarctic macrobenthic communities. Mar Biodivers 43:481–487

    Article  Google Scholar 

  58. Haid V, Timmermann R (2013) Simulated heat flux and sea ice production at coastal polynyas in the southwestern Weddell Sea. J Geophys Res Oceans 118:2640–2652

    Article  Google Scholar 

  59. Harley CDG (2011) Climate change, keystone predation, and biodiversity loss. Science 334:1124–1127

    Article  PubMed  CAS  Google Scholar 

  60. Havermans C (2012) DNA barcoding, phylogeography and phylogeny of the Lysianassoidea (Crustacea: Amphiopda) from the Southern Ocean and the Worlds Deep Seas. Dissertation, Université Catholique de Louvain

  61. Havermans C (2014) Chapter 10.6. Phylogeographic patterns of the Lysianassoidea (Crustacea: Peracarida: Amphipoda). In: De Broyer C, Koubbi P, Griffiths HJ, Raymond B, d’Acoz CUD et al (eds.) Biogeographic atlas of the Southern Ocean. Scientific Committee on Antarctic Research, Cambridge, p 441–447

  62. Havermans C, Nagy Z, Sonet G, De Broyer C, Martin P (2010) Incongruence between molecular phylogeny and morphological classification in amphipod crustaceans: a case study of Antarctic lysianassoids. Mol Phylogenet Evol 55:202–209

    Article  PubMed  Google Scholar 

  63. Havermans C, Nagy Z, Sonet G, De Broyer C, Martin P (2011) DNA barcoding reveals new insights into the diversity of Antarctic species of Orchomene sensu lato (Crustacea: Amphipoda: Lysianassoidea). Deep Sea Res Part II Top Stud Oceanogr 58:230–241

    Article  CAS  Google Scholar 

  64. Havermans C, Robert H, d’Acoz CDU (2013) Biodiversity and phylogeographic patterns of amphipod crustaceans in Antarctic seas. In: Knust R, Gerdes D, Mintenbeck K (eds) The expedition of the research vessel “Polarstern” to the Antarctic in 2011 (ANT-XXVII/3) (CAMBIO). Ber Polarforsch Meeresforsch 644:35–40

    Google Scholar 

  65. Hebert PD, Ratnasingham S, de Waard JR (2003) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc Lond B Biol Sci 270:S96–S99

    Article  CAS  Google Scholar 

  66. Hellmer HH, Kauker F, Timmermann R, Hattermann T (2017) The fate of the Southern Weddell Sea continental shelf in a warming Climate. J Clim 30:4337–4350. https://doi.org/10.1175/JCLI-D-16-0420.1

    Article  Google Scholar 

  67. Horton T, Lowry J, De Broyer C, Bellan-Santini D, Coleman CO, Daneliya M, Dauvin J-C, Fišer C, Gasca R, Grabowski M, Guerra-García JM, Hendrycks, E, Holsinger J, Hughes L, Jaume D, Jażdżewski K, Just J, Kamaltynov RM, Kim YH, King R, Krapp-Schickel T, LeCroy S, Lörz AN, Senna AR, Serejo C, Sket B, Tandberg AH, Thomas J, Thurston M, Vader W, Väinölä R, Vonk R, White K, Zeidler W (2017) World Amphipoda Database. http://www.marinespecies.org/amphipoda. Accessed 14 Sept 2017

  68. Hubold G (1984) Spatial distribution of Pleuragramma antarcticum (Pisces: Nototheniidae) near the Filchner- and Larsen ice shelves (Weddell Sea/Antarctica). Pol Biol 3:231–236

    Article  Google Scholar 

  69. Hurley D (1963) Amphipoda of the family Lysianassidae from the west coast of North and Central America. University of Southern California Press

  70. Hurley D (1965a) A common but hitherto undescribed species of Orchomenella (Crustacea: Amphipoda family Lysianassidae) from Ross Sea. Trans Roy Soc NZ Zool 6:107

    Google Scholar 

  71. Hurley D (1965b) A re-description of some AO Walker types of the southern cross Lysianassidae (Crustacea Amphipoda) from Ross Sea. Trans Roy Soc NZ Zool 6:155

    Google Scholar 

  72. Jackson JBC, Kirby MX, Berger WH, Bjornda KA, Botsford LW, Bourque BJ, Bradbury RH, Cooke R, Erlandson J, Estes JA, Hughes TP, Kidwel S, Lange CB, Lenihan HS, Pandolfi JM, Peterson CH, Steneck RS, Tegner MJ, Warner RR (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–637. https://doi.org/10.1126/science.1059199

    Article  PubMed  CAS  Google Scholar 

  73. Jażdżewska AM, Corbari L, Driskell A, Frutos I, Havermans C, Hendrycks E, Hughes L, Lörz A-N, Stransky B, Tandberg AHS, Vader W, Brix S (2018) A genetic fingerprint of Amphipoda from Icelandic waters—the baseline for further biodiversity and biogeography studies. In: Brix S, Lörz A-N, Stransky B, Svavarsson J (eds) Amphipoda from the IceAGE-project (Icelandic marine Animals: Genetics and Ecology). ZooKeys 731:55–73. https://doi.org/10.3897/zookeys.731.19931

  74. Kilgallen N, Lowry J (2014) The Tryphosa group (Crustacea: Amphipoda: Lysianassoidea: Lysianassidae: Tryphosinae). Zootaxa 3768:501–545

    Article  PubMed  CAS  Google Scholar 

  75. Kilgallen N, Lowry J (2015a) The genus Hippomedon in Australian waters (Crustacea, Amphipoda, Lysianassidae, Tryphosinae). Zootaxa 3926:377–395

    Article  PubMed  CAS  Google Scholar 

  76. Kilgallen N, Lowry J (2015b) The tryphosine genus Cheirimedon in Australian waters (Crustacea, Amphipoda, Lysianassidae, Tryphosinae). Zootaxa 4014:1–68

    Article  PubMed  CAS  Google Scholar 

  77. King NJ, Bailey DM, Priede IG (2007) Role of scavengers in marine ecosystems. Mar Ecol Prog Ser 350:175–178

    Article  Google Scholar 

  78. Knust R, Schröder M (2014) The expedition PS82 of the research vessel polarstern to the southern Weddell Sea in 2013/14. Ber Polarforsch Meeresforsch 680:1–155. https://doi.org/10.2312/BzPM_0680_2014

    Article  Google Scholar 

  79. Knust R, Gerdes D, Mintenbeck K (2012) The expedition of the Research Vessel Polarstern to the Antarctic in 2011 (ANT-XXVII/3) (CAMBIO). Ber Polarforsch Meeresforsch 644: 1–202. hdl: 10013/epic.39114

  80. Kock KH, Pshenichnov L, Jones CD, Gröger J, Riehl R (2008) The biology of the spiny icefish Chaenodraco wilsoni Regan, 1914. Polar Biol 31:381–393. https://doi.org/10.1007/s00300-007-0366-z

    Article  Google Scholar 

  81. Lowry J, Kilgallen N (2014a) A generic review of the lysianassoid family Uristidae and descriptions of new taxa from Australian waters (Crustacea, Amphipoda, Uristidae). Zootaxa 3867:1–92

    Article  PubMed  CAS  Google Scholar 

  82. Lowry J, Kilgallen N (2014b) A revision of the lysianassid genus Waldeckia with the description of four new species (Crustacea, Amphipoda, Lysianassidae, Waldeckiinae subfam. nov.). Zootaxa 3784:301–345

    Article  PubMed  CAS  Google Scholar 

  83. Lowry J, Kilgallen N (2015a) Debroyerella gen. nov. and Ulladulla gen. nov., two new lysianassoid genera (Crustacea, Amphipoda, Lysianassoidea). Zootaxa 3920:153–162

    Article  PubMed  CAS  Google Scholar 

  84. Lowry J, Kilgallen N (2015b) A new species of Waldeckia from the Austral Isles, Society Islands (Amphipoda, Lysianassoidea, Lysianassidae, Waldeckiinae). Zootaxa 3995:78–83

    Article  PubMed  CAS  Google Scholar 

  85. Lowry J, Stoddart H (1983) The shallow-water gammaridean Amphipoda of the subantarctic islands of New Zealand and Australia: Lysianassoidea. J Roy Soc NZ 13:279–394

    Article  Google Scholar 

  86. Lowry J, Stoddart H (1993) The Onisimus problem (Amphipoda, Lysianassoidea, Uristidae). Zool Scr 22:167–181

    Article  Google Scholar 

  87. Lowry J, Stoddart H (1995) The Amphipoda (Crustacea) of Madang Lagoon: Lysianassidae, Opisidae, Uristidae, Wandinidae and Stegocephalidae. Rec Aust Mus 22:97–174

    Article  Google Scholar 

  88. Lowry J, Stoddart H (1997) Amphipoda Crustacea IV. Families Aristiidae, Cyphocarididae, Endevouridae, Lysianassidae, Scopelocheiridae, Uristidae. Mem Hourglass Cruises 10:1–130

    Google Scholar 

  89. Lowry J, Stoddart H (2002) The lysianassoid amphipod genera Lepidepecreoides and Lepidepecreum in southern waters (Crustacea: Lysianassidae: Tryphosinae). Rec Aust Mus 54:335–364

    Article  Google Scholar 

  90. Lowry J, Stoddart H (2011) The tryphosine genera Photosella gen. nov. and Tryphosella Bonnier, 1893 (Crustacea: Amphipoda: Lysianassoidea: Lysianassidae: Tryphosinae) in Australian waters. Zootaxa 2956:1–76

    Google Scholar 

  91. Mellin C, Aaron MacNeil M, Cheal AJ, Emslie MJ, Julian Caley M (2016) Marine protected areas increase resilience among coral reef communities. Ecol Lett 19:629–637

    Article  PubMed  Google Scholar 

  92. Moleón M, Sánchez-Zapata JA (2015) The living dead: time to integrate scavenging into ecological teaching. BioSci 65:1003–1010

    Article  Google Scholar 

  93. Mori A (2016) Resilience in the studies of biodiversity-ecosystem functioning. Trends Ecol Evol 31:87–89

    Article  PubMed  Google Scholar 

  94. Mori A, Furukawa T, Sasaki T (2013) Response diversity determines the resilience of ecosystems to environmental change. Biol Rev 88:349–364

    Article  PubMed  Google Scholar 

  95. Nimmo DG, Mac Nally R, Cunningham SC, Haslem A, Bennett AF (2015) Vive la résistance: reviving resistance for 21st century conservation. Trends Ecol Evol 30:516–523

    Article  PubMed  CAS  Google Scholar 

  96. Nybelin O (1947) Antarctic fishes. Sci result Norweg Antarc Exped 1927–28 26:1–76

  97. Nyssen F, Brey T, Lepoint G, Bouquegneau J-M, De Broyer C, Dauby P (2002) A stable isotope approach to the eastern Weddell Sea trophic web: focus on benthic amphipods. Pol Biol 25:280–287

    Google Scholar 

  98. Plötz J (1986) Summer diet of Weddell seals (Leptonychotes weddelli) in the Eastern and Southern Weddell Sea, Antarctica. Pol Biol 6:97–102

    Article  Google Scholar 

  99. Plötz J, Bornemannn H, Knust R, Schröder A, Bester M (2001) Foraging behaviour of Weddell seals, and its ecological implications. Pol Biol 24:901–909

    Article  Google Scholar 

  100. Presler P (1986) Necrophagous invertebrates of the admiralty Bay of King George Island (South Shetland Islands, Antarctica). Pol Polar Res 7:25–61

    Google Scholar 

  101. Puillandre N, Lambert A, Brouillet S, Achaz G (2012) ABGD, automatic barcode gap discovery for primary species delimitation. Mol Ecol 21:1864–1877

    Article  PubMed  CAS  Google Scholar 

  102. Radulovici AE, Sainte-Marie B, Dufresne F (2009) DNA barcoding of marine crustaceans from the estuary and Gulf of St Lawrence: a regional-scale approach. Mol Ecol Res 9:181–187

    Article  CAS  Google Scholar 

  103. Ratnasingham S, Hebert P (2007) BOLD: the barcode of life data system (www. barcodinglife. org). Mol Ecol Notes 7:355–364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Regan CT (1914) Diagnosis of new marine fishes collected by the British Antarctic (“Terra Nova”) Expedition. Ann Mag nat Hist 13:11–17

  105. Sainte-Marie B (1986) Effect of bait size and sampling time on the attraction of the lysianassid amphipods Anonyx sarsi Steele & Brunel and Orchomenella pinguis (Boeck). J Exp Mar Biol Ecol 99:63–77. https://doi.org/10.1016/0022-0981(86)90021-3

  106. Sainte-Marie B, Hargrave BT (1987) Estimation of scavenger abundance and distance of attraction to bait. Mar Biol 94:431–443

  107. Scheffer M, Carpenter SR (2003) Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol Evol 18:648–656

    Article  Google Scholar 

  108. Schellenberg A (1926) Die gammariden der deutschen sudpolar-expedition 1901–1903. Deutsche Südpolar-Expedition 1901–1903(18):235–414

    Google Scholar 

  109. Schellenberg A (1931) Gammariden und Caprelliden des Magellangebietes, Sudgeorgiens und der Westantarktis. Furth Zool Results Swed Antarct Exped 1901–1903(2):1–290

    Google Scholar 

  110. Schiaparelli S, Alvaro MC, Kilgallen N, Scinto A, Lörz A-N (2015) Host-shift speciation in Antarctic symbiotic invertebrates: further evidence from the new amphipod species Lepidepecreella debroyeri from the Ross Sea? Hydrobiologia 761:143–159

    Article  CAS  Google Scholar 

  111. Schlitzer R (2015) Ocean data view. http://odv.awi.de

  112. Seefeldt MA (2012) Morphological analyses to clarify the systematics of the Uristes murrayi (Walker, 1903) species complex in the Southern Ocean (Crustacea, Amphipoda, Lysianassoidea). Master thesis, Ruhr-University Bochum

  113. Seefeldt MA, Weigand AM, Havermans C, Moreira E, Held C (2017a) Fishing for scavengers: an integrated study to amphipod (Crustacea: Lysianassoidea) diversity of Potter Cove, South Shetland Islands, Antarctica. Mar Biodiv. https://doi.org/10.1007/s12526-017-0737-9

  114. Seefeldt MA, Campana GL, Deregibus D, Quartino ML, Abele D, Held C (2017b) Feeding strategies in Antarctic scavenging amphipods and their implications for colonisation success in times of retreating glaciers. Front Zool 14:59. https://doi.org/10.1186/s12983-017-0248-3

  115. Slattery PN, Oliver JS (1986) Scavenging and other feeding habits of Lysianassid amphipods (Orchomene spp.) from McMurdo sound, Antarctica. Polar Biol 6:171–177

    Article  Google Scholar 

  116. Smale DA, Barnes DKA, Fraser KPP (2007a) The influence of depth, site exposure and season on the intensity of iceberg scouring in nearshore Antarctic waters. Polar Biol 30:769–779. https://doi.org/10.1007/s00300-006-0236-0

    Article  Google Scholar 

  117. Smale DA, Barnes DKA, Fraser KPP (2007b) The influence of depth, site exposure and season on the intensity of iceberg scouring in nearshore Antarctic waters. Polar Biol 30:769–779. https://doi.org/10.1007/s00300-006-0236-0

    Article  Google Scholar 

  118. Smith CR, Baco AR (2003) Ecology of whale falls at the deep-sea floor. Oceanogr Mar Biol Ann Rev 41:311–354

  119. Stebbing TRR (1888) Report on the Amphipoda collected by H.M.S. challenger during the years 1873–1876. Report on the scientific results of the Voyage of H.M.S. challenger during the years 1873–76. Zoology 29:1–1737

    Google Scholar 

  120. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Teschke K, Beaver D, Bester MN, Bombosch A, Bornemann H, Brandt A, Brtnik P, De Broyer C, Burkhardt E, Danis B, Dieckmann G, Douglass L, Flores H, Gerdes D, Griffiths HJ, Gutt J, Hain S, Hauck J, Hellmer H, Herata H, Hoppema M, Isla E, Jerosch, Kaiser S, Koubbi P, Kock K-H, Krause R, Kuhn G, Lemke P, Liebschner A, Linse K, Miller H, Mintenbeck K, Nixfdorf U, Pehlke H, Post A, Schröder M, Shust KV, Schwegmann S, Siegel V, Strass V, Thomisch K, Timmermann R, Trathan PN, van de Putte A, van Franeker J, van Opzeeland IC, von Nordheim H, Brey T (2016) Scientific background document in support of the development of a CCAMLR MPA in the Weddell Sea (Antarctica)—version 2016—part A: general context of the establishment of MPAs and background information on the Weddell Sea MPA planning area. CCAMLR. p 1–112

  122. Thompson JD, Higgings DG, Gibson TJ (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acid Res 22:4673–4680. https://doi.org/10.1093/nar/22.22.4673

    Article  CAS  Google Scholar 

  123. UNSDG (2015) United Nations sustainable development goals, GA 70/1. http://www.un.org/ga/search/view_doc.asp?symbol=A/RES/70/1&Lang=E

  124. Walker AO (1903) Amphipoda of the ‘Southern Cross’ Antarctic expedition. Zool J Linn Soc 29:38–64

    Article  Google Scholar 

  125. Wilson EE, Wolkovich EM (2011) Scavenging: how carnivores and carrion structure communities. Trends Ecol Evol 26:135

    Article  Google Scholar 

  126. Worm B, Sandow M, Oschlies A, Lotze H, Myers RA (2005) Global patterns of predator diversity in the open oceans. Science 309:1365–1369. https://doi.org/10.1126/science.1113399

    Article  PubMed  CAS  Google Scholar 

  127. Worm B, Barbier EB, Beaumont N, Duffy JE, Folke C, Halpern BS, Jackson JBC, Lotze HK, Micheli F, Palumbi S, Sala E, Selkoe KA, Stachowicz JJ, Watson R (2006) Impacts of biodiversity loss on ocean ecosystem services. Science 314:787–790

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Science Foundation) in the framework of the priority program “Antarctic Research with Comparative Investigations in Glaciated Areas of the Arctic” with the grant HA 7627/1-1 (C. Havermans), TO 171/9-1 and HE 3391/7-1 (C. Held and M.A. Seefeldt). Field work for this study was accomplished based on the Polarstern Grant No: AWI_PS82_03. We greatly acknowledge the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, the Chief Scientist Dr. Rainer Knust, as well as the captain and crew of the R/V “Polarstern” expedition ANT-XXIX/9 (PS82) for their highly skillful support during the numerous sampling opportunities which we received on board. Particularly the “fish team” of PS82, Dr. Rainer Knust, Nils Koschnick, and colleagues are greatly acknowledged for the use of their lander system for the deployment of amphipod traps. Part of the molecular work carried out by C. Havermans in 2014 was supported by the vERSO project, funded by the Belgian Science Policy Office (BELSPO, contract no BR/132/A1/vERSO), to which this is manuscript contribution #20. We are highly thankful to Dr. Claude De Broyer, Dr. Anna Jażdżewska, Dr. Saskia Brix as well as an anonymous reviewer for their valuable comments on the previous version of the manuscript.

Funding

This work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Science Foundation) in the framework of the priority program “Antarctic Research with Comparative Investigations in Glaciated Areas of the Arctic” with the grant HA 7627/1-1 (C. Havermans), TO 171/9-1 and HE 3391/7-1 (C. Held and M.A. Seefeldt).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Charlotte Havermans or Meike Anna Seefeldt.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Havermans, C., Seefeldt, M.A. & Held, C. A biodiversity survey of scavenging amphipods in a proposed marine protected area: the Filchner area in the Weddell Sea, Antarctica. Polar Biol 41, 1371–1390 (2018). https://doi.org/10.1007/s00300-018-2292-7

Download citation

Keywords

  • Amphipoda
  • Lysianassoidea
  • Barcoding
  • COI gene
  • Taxonomy
  • Carrion-feeder
  • Food falls