Advertisement

Polar Biology

, Volume 41, Issue 7, pp 1335–1352 | Cite as

Abundance and observations of thermophilic microbial and viral communities in submarine and terrestrial hot fluid systems of the French Southern and Antarctic Lands

  • Kaarle J. Parikka
  • Stéphan Jacquet
  • Jonathan Colombet
  • Damien Guillaume
  • Marc Le Romancer
Original Paper

Abstract

Studies investigating viral ecology have mainly been conducted in temperate marine and freshwater habitats. Fewer reports are available on the often less accessible “extreme environments” such as hot springs. This study investigated prokaryotic- and virus-like particles (VLP) associated to hot springs, themselves situated in cold environments of the Southern Hemisphere (i.e. in the French Southern and Antarctic Lands). This was performed by examining their abundance in hot springs and surrounding temperate seawater using both epifluorescence microscopy (EFM) and flow cytometry (FCM), which was applied for the first time to such ecosystems. On one hand, prokaryotic abundances of 4.0 × 105–2.2 × 106 cell mL−1 and 7.0 × 104–2.8 × 106 cell mL−1 were measured using EFM and FCM, respectively. The abundances of virus-like particles (VLP), on the other hand, ranged between 9.8 × 105 and 7.5 × 106 particles mL−1 when using EFM, and between 1.3 × 105 and 6.2 × 106 particles mL−1 when FCM was applied. A positive correlation was found between VLP and prokaryotic abundances, while the virus-to-prokaryote ratio was generally low and ranged between 0.1 and 6. In parallel, samples and culture supernatants were also visualised using transmission electron microscopy. For this, enrichment cultures were prepared using environmental samples. Both raw sample and enrichment culture—supernatants were analysed for the presence of VLPs. Observations revealed the presence of Caudovirales, membrane vesicles and possibly a new type of virion morphology, associated to members of the order Thermotogales, a thermophilic and anaerobic bacterium.

Keywords

Abundance Thermophilic Virus-like particle Flow cytometry Epifluorescence microscopy Hot spring 

Notes

Acknowledgments

This study benefited of the Ministère de l’Enseignement Supérieur et de la Recherche doctoral-grant, (a CAREX-grant allowing a visit to the University of Bergen, Norway, and an IPEV (the French Polar Institute Paul- Emile Victor) fundings in the HOTVIR programme no 408. The sampling expedition was organised by the Institut Paul Emile Victor. The authors would like to thank the Territoire des Terres Australes et Antarctiques Françaises (TAAF), IPEV and its logistical staff for assistance in the field. The scientific diving protocol was initiated by Stéphan Jacquet. At field, diving was designed and coordinated by Patrick Le Chevalier and carried out by himself, Gilles Sarragoni and Christine David-Beaussire. Authors would also like to thank Dr. Mikal Heldal for his help in making electron microscopic observations of raw samples, Gérard Sinquin and Philippe Eliès of the Plateforme d’Imagerie et de Mesure en Microscopie (UBO) for their help in making electron microscopic observations of enrichment and pure culture supernatants, Valerie Chavagnac, Philippe Besson, Stéphanie Mounic and Carole Causserand (GET) for the chemical analyses of hydrothermal fluids, and Dr. Julien Farasin for his help in sample preliminary analyses. Authors are also grateful for Malcolm O’Toole for his valuable comments on the manuscript.

Supplementary material

300_2018_2288_MOESM1_ESM.pdf (1.5 mb)
Supplementary material 1 (PDF 1492 kb)

References

  1. Abby SS, Cury J, Guglielmini J, Neron B, Touchon M, Rocha EP (2016) Identification of protein secretion systems in bacterial genomes. Sci Rep 6:23080.  https://doi.org/10.1038/srep23080 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ackermann H-W, Heldal M (2010) Basic electron microscopy of aquatic viruses. In: Suttle CA, Wilhelm SW, Weinbauer MG (eds) Manual of Aquatic Viral Ecology. ASLO, Waco, pp 182–192CrossRefGoogle Scholar
  3. Ackermann H-W, Prangishvili D (2012) Prokaryote viruses studied by electron microscopy. Arch Virol 157:1843–1849CrossRefPubMedGoogle Scholar
  4. Adams MD (1959) Bacteriophages. Interscience Publishers Inc, New YorkGoogle Scholar
  5. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410.  https://doi.org/10.1016/S0022-2836(05)80360-2 CrossRefPubMedGoogle Scholar
  6. Anesio AM, Mindl B, Laybourn-Parry J, Hodson AJ, Sattler B (2007) Viral dynamics in cryoconite holes on a high Arctic glacier (Svalbard). J Geophys Res.  https://doi.org/10.1029/2006jg000350 Google Scholar
  7. Armórsson S, Andrésdóttir A (1995) Processes controlling the distribution of boron and chlorine in natural waters in Iceland. Geochim Cosmochim Acta 59:4125–4146CrossRefGoogle Scholar
  8. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296PubMedPubMedCentralGoogle Scholar
  9. Bari W, Lee KM, Yoon SS (2012) Structural and functional importance of outer membrane proteins in Vibrio cholerae flagellum. J Microbiol 50:631–637.  https://doi.org/10.1007/s12275-012-2116-3 CrossRefPubMedGoogle Scholar
  10. Bize A et al (2009) A unique virus release mechanism in the Archaea. PNAS 106:11306–11311.  https://doi.org/10.1073/pnas.0901238106 CrossRefPubMedGoogle Scholar
  11. Børsheim KY, Bratbak G, Heldal M (1990) Enumeration and biomass estimation of planktonic bacteria and viruses by transmission electron microscopy. Appl Environ Microbiol 56:352–356PubMedPubMedCentralGoogle Scholar
  12. Breitbart M, Wegley L, Leeds S, Schoenfeld T, Rohwer F (2004) Phage community dynamics in hot springs. Appl Environ Microbiol 70:1633–1640CrossRefPubMedPubMedCentralGoogle Scholar
  13. Brum JR, Steward GF (2010) Morphological characterization of viruses in the stratified water column of alkaline, hypersaline Mono Lake. Microb Ecol 60:636–643.  https://doi.org/10.1007/s00248-010-9688-4 CrossRefPubMedGoogle Scholar
  14. Brum JR, Sullivan MB (2015) Rising to the challenge: accelerated pace of discovery transforms marine virology. Nat Rev Microbiol 13:147–159.  https://doi.org/10.1038/nrmicro3404 CrossRefPubMedGoogle Scholar
  15. Brum JR, Schenck RO, Sullivan MB (2013) Global morphological analysis of marine viruses shows minimal regional variation and dominance of non-tailed viruses. ISME J 7:1738–1751.  https://doi.org/10.1038/ismej.2013.67 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Brussaard CP (2004) Optimization of procedures for counting viruses by flow cytometry. Appl Environ Microbiol 70:1506–1513CrossRefPubMedPubMedCentralGoogle Scholar
  17. Brussaard CP, Marie D, Bratbak G (2000) Flow cytometric detection of viruses. J Virol Method 85:175–182CrossRefGoogle Scholar
  18. Brussaard CPD, Payet JP, Winter C, Weinbauer MG (2010) Quantification of aquatic viruses by flow cytometry. In: Suttle CA, Wilhelm SW, Weinbauer MG (eds) Manual of Aquatic viral ecology. ASLO, Waco, pp 102–109CrossRefGoogle Scholar
  19. Canganella F, Wiegel J (2014) Anaerobic Thermophiles. Life 4:77–104.  https://doi.org/10.3390/life4010077 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Charvis P, Recq M, Operto S, Brefort D (1995) Deep structure of the northern Kerguelen Plateau and hotspot-related activity. Geophys J Int 122:899–924CrossRefGoogle Scholar
  21. Chavagnac V, Monnin C, Ceuleneer G, Boulart C, Hoareau G (2013) Characterization of hyperalkaline fluids produces by low temperature serpentinization of mantle peridotites in the Sultanate of Oman and in Liguria (Northern Italy). Geochem Geophys Geosyst 14:2496–2522CrossRefGoogle Scholar
  22. Chen F, Lu JR, Binder BJ, Liu YC, Hodson RE (2001) Application of digital image analysis and flow cytometry to enumerate marine viruses stained with SYBR gold. Appl Environ Microbiol 67:539–545.  https://doi.org/10.1128/AEM.67.2.539-545.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Chiura HX, Yamamoto H, Koketsu D, Naito H, Kato K (2002) Virus-like particles derived from a bacterium belonging to the oldest lineage of the domain bacteria. Microb Environ 17:48–52CrossRefGoogle Scholar
  24. Costa TR, Felisberto-Rodrigues C, Meir A, Prevost MS, Redzej A, Trokter M, Waksman G (2015) Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat Rev Microbiol 13:343–359.  https://doi.org/10.1038/nrmicro3456 CrossRefPubMedGoogle Scholar
  25. Cunningham BR, Brum JR, Schwenck SM, Sullivan MB, John SG (2015) An inexpensive, accurate, and precise wet-mount method for enumerating aquatic viruses. Appl Environ Microbiol 81:2995–3000.  https://doi.org/10.1128/AEM.03642-14 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Danovaro R, Dell’Anno A, Corinaldesi C, Magagnini M, Noble R, Tamburini C, Weinbauer M (2008) Major viral impact on the functioning of benthic deep-sea ecosystems. Nature 454:1084–1087.  https://doi.org/10.1038/nature07268 CrossRefPubMedGoogle Scholar
  27. Delorme H, Verdier O, Cheminee JL, Giret A, Pineau F, Javoy M (1994) Etude chimique et rapports isotopiques du carbone des fumerolles de la péninsule Rallier du Baty (îles Kerguelen). Mém Soc Géol France 166:5–30Google Scholar
  28. Duhamel S, Jacquet S (2006) Flow cytometric analysis of bacteria- and virus-like particles in lake sediments. J Microbiol Methods 64:316–332.  https://doi.org/10.1016/j.mimet.2005.05.008 CrossRefPubMedGoogle Scholar
  29. Ewert DL, Paynter MJ (1980) Enumeration of bacteriophages and host bacteria in sewage and the activated-sludge treatment process. Appl Environ Microbiol 39:576–583PubMedPubMedCentralGoogle Scholar
  30. Gagnevin D, Ethien R, Bonin B, Giret A (2003) Open-system processes in the genesis of silica-oversaturated alkaline series of the Rallier du Baty peninsula, Kerguelen archipelago (Indian Ocean). J Volc Geotherm Res 123:267–300CrossRefGoogle Scholar
  31. Gaudin M, Gauliard E, Schouten S, Houel-Renault L, Lenormand P, Marguet E, Forterre P (2013) Hyperthermophilic archaea produce membrane vesicles that can transfer DNA. Environ Microbiol Rep 5:1–8CrossRefGoogle Scholar
  32. Gaudin M et al (2014) Extracellular membrane vesicles harbouring viral genomes. Environ Microbiol 16:1167–1175.  https://doi.org/10.1111/1462-2920.12235 CrossRefPubMedGoogle Scholar
  33. Geslin C, Le Romancer M, Erauso G, Gaillard M, Perrot G, Prieur D (2003) PAV1, the first virus-like particle isolated from a hyperthermophilic euryarchaeote, “Pyrococcus abyssi”. J Bacteriol 185:3888–3894CrossRefPubMedPubMedCentralGoogle Scholar
  34. Giret A (1983) Le plutonisme océanique intraplaque. Exemple de l’archipel Kerguelen. Terres Australes et Antarctiques Françaises. Thesis, Université Pierre et Marie Curie, Paris, FranceGoogle Scholar
  35. Hara S, Terauchi K, Koike I (1991) Abundance of viruses in marine waters: assessment by epifluorescence and transmission electron microscopy. Appl Environ Microbiol 57:2731–2734PubMedPubMedCentralGoogle Scholar
  36. Häring M, Peng X, Brugger K, Rachel R, Stetter KO, Garrett RA, Prangishvili D (2004) Morphology and genome organization of the virus PSV of the hyperthermophilic archaeal genera Pyrobaculum and Thermoproteus: a novel virus family, the Globuloviridae. Virol 323:233–242.  https://doi.org/10.1016/j.virol.2004.03.002 CrossRefGoogle Scholar
  37. Häring M, Vestergaard G, Rachel R, Chen L, Garrett RA, Prangishvili D (2005) Virology: independent virus development outside a host. Nature 436:1101–1102.  https://doi.org/10.1038/4361101a CrossRefPubMedGoogle Scholar
  38. Helton RR, Wang K, Kan J, Powell DH, Wommack KE (2012) Interannual dynamics of viriobenthos abundance and morphological diversity in Chesapeake Bay sediments. FEMS Microbiol Ecol 79:474–486.  https://doi.org/10.1111/j.1574-6941.2011.01238.x CrossRefPubMedGoogle Scholar
  39. Itoh T (2003) Taxonomy of nonmethanogenic hyperthermophilic and related thermophilic archaea. J Biosci Bioeng 96:203–212CrossRefPubMedGoogle Scholar
  40. Jaatinen ST, Happonen LJ, Laurinmaki P, Butcher SJ, Bamford DH (2008) Biochemical and structural characterisation of membrane-containing icosahedral dsDNA bacteriophages infecting thermophilic Thermus thermophilus. Virol 379:10–19.  https://doi.org/10.1016/j.virol.2008.06.023 CrossRefGoogle Scholar
  41. Jacquet S, Dorigo U, Personnic S (2013) A few tests prior to flow cytometry and epifluorescence analyses of freshwater bacterio- and virioplankton communities. In: Papandreou S (ed) Flow cytometry: principles, methodology and applications, chapter 1. Nova Science Publishers, New York, pp 1–30Google Scholar
  42. Janekovic D, Wunderl S, Holz I, Zillig W, Gierl A, Neumann H (1983) TTV1, TTV2 and TTV3, a family of viruses of the extremophilic, anaerobic, sulfur reducing archaebacterium Thermoproteux tenax. MGG 192:39–45Google Scholar
  43. Juniper SK, Bird DF, Summit M, Vong MP, Baker ET (1998) Bacterial and viral abundances in hydrothermal event plumes over northern Gorda Ridge. Deep Sea Res Part II 45:2739–2749CrossRefGoogle Scholar
  44. Klatt CG et al (2011) Community ecology of hot spring cyanobacterial mats: predominant populations and their functional potential. ISME J 5:1262–1278.  https://doi.org/10.1038/ismej.2011.73 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Kostrzynska M, Betts JD, Austin JW, Trust TJ (1991) Identification, characterization, and spatial localization of two flagellin species in Helicobacter pylori flagella. J Bacteriol 173:937–946CrossRefPubMedPubMedCentralGoogle Scholar
  46. Kott Y (1965) Estimation of low numbers of Escherichia coli bacteriophage by use of the most probable number method. Appl Microbiol 14:141–144Google Scholar
  47. Lavigne R, Ceyssens P-J (2012) Family—Myoviridae. In: King AMQ, Adams MJ, Carstens EB, Efkowitz EJL (ed) Elsevier Academic Press, San Diego, pp 46–62Google Scholar
  48. Lee MH et al (2007) Evaluation of viral and prokaryotic community dynamics in Alvord Desert hot springs, Oregon, USA. Aquat Microb Ecol 48:19–26.  https://doi.org/10.3354/ame048019 CrossRefGoogle Scholar
  49. Liu B, Wu S, Song Q, Zhang X, Xie L (2006) Two novel bacteriophages of thermophilic bacteria isolated from deep-sea hydrothermal fields. Curr Microbiol 53:163–166.  https://doi.org/10.1007/s00284-005-0509-9 CrossRefPubMedGoogle Scholar
  50. Liu B, Zhou F, Wu S, Xu Y, Zhang X (2009) Genomic and proteomic characterization of a thermophilic Geobacillus bacteriophage GBSV1. Res Microbiol 160:166–171.  https://doi.org/10.1016/j.resmic.2008.12.005 CrossRefPubMedGoogle Scholar
  51. Liu B, Wu S, Xie L (2010) Complete genome sequence and proteomic analysis of a thermophilic bacteriophage BV1. Acta Oceanol Sin 29:84–89CrossRefGoogle Scholar
  52. Lossouarn J et al (2015) ‘Menage a trois’: a selfish genetic element uses a virus to propagate within Thermotogales. Environ Microbiol 17:3278–3288.  https://doi.org/10.1111/1462-2920.12783 CrossRefPubMedGoogle Scholar
  53. Manini E et al (2008) Prokaryote diversity and virus abundance in shallow hydrothermal vents of the Mediterranean Sea (Panarea Island) and the Pacific Ocean (north Sulawesi-Indonesia). Microb Ecol 55:626–639.  https://doi.org/10.1007/s00248-007-9306-2 CrossRefPubMedGoogle Scholar
  54. Maranger R, Bird DF (1995) Viral abundance in aquatic systems: a comparison between marine and fresh waters. Mar Ecol Prog Ser 121:217–226CrossRefGoogle Scholar
  55. Marie D, Brussaard CPD, Thyrhaug R, Bratbak G, Vaulot D (1999) Enumeration of marine viruses in culture and natural samples by flow cytometry. Appl Environ Microbiol 65:45–52PubMedPubMedCentralGoogle Scholar
  56. Maugeri TL, Lentini V, Spanò A, Gugliandolo C (2013) Abundance and diversity of picocyanobacteria in shallow hydrothermal vents of Panarea Island (Italy). Geomicrobiol J 30:93–99CrossRefGoogle Scholar
  57. Mehta R, Singhal P, Singh H, Damle D, Sharma AK (2016) Insight into thermophiles and their wide-spectrum applications. 3. Biotech 6:81.  https://doi.org/10.1007/s13205-016-0368-z Google Scholar
  58. Mochizuki T, Krupovic M, Pehau-Arnaudet G, Sako Y, Forterre P, Prangishvili D (2012) Archaeal virus with exceptional virion architecture and the largest single-stranded DNA genome. PNAS 109:13386–13391.  https://doi.org/10.1073/pnas.1203668109 CrossRefPubMedGoogle Scholar
  59. Noble RT, Fuhrman JA (1998) Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria. Aquat Microb Ecol 14:113–118.  https://doi.org/10.3354/ame014113 CrossRefGoogle Scholar
  60. Nougier J, Ballestracci R, Blavoux B (1982) Les manifestations post-volcaniques dans les îles australes françaises (T.A.A.F.): zones fumeroliennes et sources thermo-minérales. CR Acad Sc Paris 295:389–392Google Scholar
  61. Okutan E et al (2013) Novel insights into gene regulation of the rudivirus SIRV2 infecting Sulfolobus cells. RNA Biol 10:875–885.  https://doi.org/10.4161/rna.24537 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Ortmann AC, Suttle CA (2005) High abundances of viruses in a deep-sea hydrothermal vent system indicates viral mediated microbial mortality. Deep Sea Res Part I 52:1515–1527CrossRefGoogle Scholar
  63. Parikka KJ, Le Romancer M, Wauters N, Jacquet S (2017) Deciphering the virus-to-prokaryote ratio (VPR): insights into virus-host relationships in a variety of ecosystems. Biol Rev 92:1081–1100.  https://doi.org/10.1111/brv.12271 CrossRefPubMedGoogle Scholar
  64. Partensky F, Blanchot J, Vaulot D (1999) Differential distribution and ecology of Prochlorococcus and Synechococcus in oceanic waters: a review. Bulletin de l’Institut océanographique, Monaco, no spécial 19:457–475Google Scholar
  65. Patel A, Noble RT, Steele JA, Schwalbach MS, Hewson I, Fuhrman JA (2007) Virus and prokaryote enumeration from planktonic aquatic environments by epifluorescence microscopy with SYBR Green I. Nat Protoc 2:269–276.  https://doi.org/10.1038/nprot.2007.6 CrossRefPubMedGoogle Scholar
  66. Payet JP, Suttle CA (2008) Physical and biological correlates of virus dynamics in the southern Beaufort Sea and Amundsen Gulf. J Mar Syst 74:933–945.  https://doi.org/10.1016/j.jmarsys.2007.11.002 CrossRefGoogle Scholar
  67. Peduzzi P, Agis M, Luef B (2013) Evaluation of confocal laser scanning microscopy for enumeration of virus-like particles in aquatic systems. Environ Monit Assess 185:5411–5418.  https://doi.org/10.1007/s10661-012-2955-8 CrossRefPubMedGoogle Scholar
  68. Personnic S, Domaizon I, Sime-Ngando T, Jacquet S (2009) Seasonal variations of microbial abundances and virus- versus flagellate-induced mortality of picoplankton in three peri-alpine lakes. J Plankton Res 31:1161–1177CrossRefGoogle Scholar
  69. Pina M, Bize A, Forterre P, Prangishvili D (2011) The archaeoviruses. FEMS Microbiol Rev 35:1035–1054CrossRefPubMedGoogle Scholar
  70. Postec A, Ciobanu M, Birrien JL, Bienvenu N, Prieur D, Le Romancer M (2010) Marinitoga litoralis sp. nov., a thermophilic, heterotrophic bacterium isolated from a coastal thermal spring on Ile Saint-Paul, Southern Indian Ocean. Int J Syst Evol Microbiol 60:1778–1782.  https://doi.org/10.1099/ijs.0.017574-0 CrossRefPubMedGoogle Scholar
  71. Pradeep Ram AS, Palesse S, Colombet J, Thouvenot A, Sime-Ngando T (2014) The relative importance of viral lysis and nanoflagellate grazing for prokaryote mortality in temperate lakes. Freshw Biol 59:300–311.  https://doi.org/10.1111/fwb.12265 CrossRefGoogle Scholar
  72. Prangishvili D (2006) Hyperthermophilic virus-host systems: detection and isolation. In: Rainey F, Ohren A (eds) Extremophiles. Academic Press, Cambridge, pp 331–347Google Scholar
  73. Prangishvili D (2013) The wonderful world of archaeal viruses. Annu Rev Microbiol 67:565–585.  https://doi.org/10.1146/annurev-micro-092412-155633 CrossRefPubMedGoogle Scholar
  74. Rice G et al (2004) The structure of a thermophilic archaeal virus shows a double-stranded DNA viral capsid type that spans all domains of life. PNAS 101:7716–7720.  https://doi.org/10.1073/pnas.0401773101 CrossRefPubMedGoogle Scholar
  75. Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101.  https://doi.org/10.1038/35059215 CrossRefPubMedGoogle Scholar
  76. Sakaki Y, Oshima T (1975) Isolation and characterization of a bacteriophage infectious to an extreme thermophile, Thermus thermophilus HB8. J Virol 15:1449–1453PubMedPubMedCentralGoogle Scholar
  77. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning—A Laboratory Manual. In: Ausubel M, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Second Edition, Cold Spring Harbor Laboratory Press (CSH), New YorkGoogle Scholar
  78. Schmitt R, Raska I, Mayer F (1974) Plain and complex flagella of Pseudomonas rhodos: analysis of fine structure and composition. J Bacteriol 117:844–857PubMedPubMedCentralGoogle Scholar
  79. Schoenfeld T, Patterson M, Richardson PM, Wommack KE, Young M, Mead D (2008) Assembly of viral metagenomes from yellowstone hot springs. Appl Environ Microbiol 74:4164–4174.  https://doi.org/10.1128/AEM.02598-07 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Sime-Ngando T, Mignot J-P, Amblard C, Bourdier G, Desvilettes C, Quiblier-Llobéras C (1996) Caractérisation des particules virales planctoniques dans un lac du Massif Central français: aspects méthodologiques et premiers résultats. Annls Limnol 32:259–263CrossRefGoogle Scholar
  81. Soler N, Marguet E, Verbavatz JM, Forterre P (2008) Virus-like vesicles and extracellular DNA produced by hyperthermophilic archaea of the order Thermococcales. Res Microbiol 159:390–399.  https://doi.org/10.1016/j.resmic.2008.04.015 CrossRefPubMedGoogle Scholar
  82. Suttle CA (2005) Viruses in the sea. Nature 437:356–361.  https://doi.org/10.1038/nature04160 CrossRefPubMedGoogle Scholar
  83. Suttle CA (2007) Marine viruses-major players in the global ecosystem. Nat Rev Microbiol 5:801–812.  https://doi.org/10.1038/nrmicro1750 CrossRefPubMedGoogle Scholar
  84. Suttle CA, Fuhrman JA (2010) Enumeration of virus particles in aquatic or sediment samples by epifluorescence microscopy. In: Suttle CA, Wilhelm SW, Weinbauer MG (eds) Manual of aquatic viral ecology. ASLO, Waco, pp 145–153CrossRefGoogle Scholar
  85. Tarasov VG (2006) Effects of shallow-water hydrothermal venting on biological communities of coastal marine ecosystems of the western pacific. Adv Mar Biol 50:267–410CrossRefPubMedGoogle Scholar
  86. Tarasov VG et al (1999) Effect of shallow-water hydrothermal venting on the biota of Matupi Harbour (Rabaul Caldera, New Britain Island, Papua New Guinea). Cont Shelf Res 19:79–116CrossRefGoogle Scholar
  87. Tarasov VG, Gebruk AV, Mironov AN, Moskalev LI (2005) Deep-sea and shallow-water hydrothermal vent communities: two different phenomena? Chem Geol 224:5–39CrossRefGoogle Scholar
  88. Truesdell AH (1975) Geochemical techniques in exploration. In: Proceedings of 2nd UN Symposium Development and Use of Geothermal Resources 1:53–86Google Scholar
  89. Valentine DL (2007) Adaptations to energy stress dictate the ecology and evolution of the Archaea. Nat Rev Microbiol 5:316–323.  https://doi.org/10.1038/nrmicro1619 CrossRefPubMedGoogle Scholar
  90. Vaulot D (1989) CYTOPC: processing software for flow cytometric data. Signal Noise 2Google Scholar
  91. Wang Y, Zhang X (2008) Characterization of a novel portal protein from deep-sea thermophilic bacteriophage GVE2. Gene 421:61–66.  https://doi.org/10.1016/j.gene.2008.05.015 CrossRefPubMedGoogle Scholar
  92. Wang Y, Zhang X (2010) Genome analysis of deep-sea thermophilic phage D6E. Appl Environ Microbiol 76:7861–7866.  https://doi.org/10.1128/AEM.01270-10 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Ward DM, Castenholz RW, Miller SR (2012) Cyanobacteria in geothermal habitats ecology of cyanobacteria II: their diversity in space and time. Whitton BA (ed) Springer, Netherlands, pp 39–65Google Scholar
  94. Weinbauer MG (2004) Ecology of prokaryotic viruses. FEMS Microbiol Rev 28:127–181.  https://doi.org/10.1016/j.femsre.2003.08.001 CrossRefPubMedGoogle Scholar
  95. Weinbauer MG, Fuks D, Puskaric S, Peduzzi R (1994) Diel, seasonal, and depth-related variability of viruses and dissolved DNA in the Northern Adriatic Sea. Microb Ecol 30:25–41Google Scholar
  96. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703CrossRefPubMedPubMedCentralGoogle Scholar
  97. Williamson SJ, Cary SC, Williamson KE, Helton RR, Bench SR, Winget D, Wommack KE (2008) Lysogenic virus-host interactions predominate at deep-sea diffuse-flow hydrothermal vents. ISME J 2:1112–1121.  https://doi.org/10.1038/ismej.2008.73 CrossRefPubMedGoogle Scholar
  98. Wommack KE, Colwell RR (2000) Virioplankton: viruses in aquatic ecosystems. MMBR 64:69–114CrossRefPubMedGoogle Scholar
  99. Wommack KE, Williamson SJ, Sundbergh A, Helton RR, Glazer BT, Portune K, Cary SC (2004) An instrument for collecting discrete large-volume water samples suitable for ecological studies of microorganisms. Deep Sea Res Part I 51:1781–1792CrossRefGoogle Scholar
  100. Yoshida-Takashima Y et al (2012) Spatial distribution of viruses associated with planktonic and attached microbial communities in hydrothermal environments. Appl Environ Microbiol 78:1311–1320CrossRefPubMedPubMedCentralGoogle Scholar
  101. Yu MX, Slater MR, Ackermann HW (2006) Isolation and characterization of Thermus bacteriophages. Arch Virol 151:663–679.  https://doi.org/10.1007/s00705-005-0667-x CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.lnstitut Universitaire Européen de la Mer, Laboratoire de Microbiologie des Environnements Extrêmes UMR 6197Université de Bretagne OccidentalePlouzanéFrance
  2. 2.Laboratory of Microbiological ResearchQueen Astrid Military HospitalBrusselsBelgium
  3. 3.INRA CARRTEL, Station d’Hydrobiologie LacustreThonon-Les-BainsFrance
  4. 4.Laboratoire Microorganismes, Génome et EnvironnementClermont Université Blaise Pascal, UMR CNRS 6023AubièreFrance
  5. 5.Univ Lyon, UJM-Saint-Etienne, UCA, CNRS, IRD, LMV UMR 6524Saint-EtienneFrance

Personalised recommendations