Abstract
Biological soil crusts (BSCs) are key components of polar ecosystems. These complex communities are important for terrestrial polar habitats as they include major primary producers that fix nitrogen, prevent soil erosion and can be regarded as indicators for climate change. To study the genus richness of microalgae and Cyanobacteria in BSCs, two different methodologies were employed and the outcomes were compared: morphological identification using light microscopy and the annotation of ribosomal sequences taken from metatranscriptomes. The analyzed samples were collected from Ny-Ålesund, Svalbard, Norway, and the Juan Carlos I Antarctic Base, Livingston Island, Antarctica. This study focused on the following taxonomic groups: Klebsormidiophyceae, Chlorophyceae, Trebouxiophyceae, Xanthophyceae and Cyanobacteria. In total, combining both approaches, 143 and 103 genera were identified in the Arctic and Antarctic samples, respectively. Furthermore, both techniques concordantly determined 15 taxa in the Arctic and 7 taxa in the Antarctic BSC. In general, the molecular analysis indicated a higher microalgal and cyanobacterial genus richness (about 11 times higher) than the morphological approach. In terms of eukaryotic algae, the two sampling sites displayed comparable genus counts while the cyanobacterial genus richness was much higher in the BSC from Ny-Ålesund. For the first time, the presence of the genera Chloroidium, Ankistrodesmus and Dunaliella in polar regions was determined by the metatranscriptomic analysis. Overall, these findings illustrate that only the combination of morphological and molecular techniques, in contrast to one single approach, reveals higher genus richness for complex communities such as polar BSCs.
This is a preview of subscription content, access via your institution.





References
Albrecht M, Pröschold T, Schumann R (2017) Identification of Cyanobacteria in a eutrophic coastal lagoon on the Southern Baltic coast. Front Microbiol 8:923. https://doi.org/10.3389/fmicb.2017.00923
An SS, Friedel T, Hegewald E (1999) Phylogenetic relationships of Scenedesmus and Scenedesmus-like coccoid green algae as inferred from ITS-2 rDNA sequence comparison. Plant Biol 1:418–428. https://doi.org/10.1111/j.1438-8677.1999.tb00724.x
Andreyeva V, Kurbatova L (2014) Terrestrial and aerophilic nonmotile green microalgae (Chlorophyta) from regions of investigation of Russian Antarctic expedition. Nov Sist Nizsh Rast 46:12–26
Bañón M, Justel A, Velázquez D, Quesada A (2013) Regional weather survey on Byers Peninsula, Livingston Island, South Shetland Islands, Antarctica. Antarct Sci 25:146–156. https://doi.org/10.1017/S0954102012001046
Belnap J (2006) The potential roles of biological soil crusts in dryland hydrologic cycles. Hydrol Process 20:3159–3178. https://doi.org/10.1002/hyp.6325
Belnap J, Büdel B, Lange OL (2001a) Biological soil crusts: characteristics and distribution. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, Berlin, pp 3–30
Belnap J, Rosentreter R, Leonard S et al (2001b) Biological soil crusts: Ecology and management. US Department of the Interior, Bureau of Land Management, National Science and Technology Center, Denver
Bentley DR, Balasubramanian S, Swerdlow HP et al (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456:53–59. https://doi.org/10.1038/nature07517.Accurate
Bischoff H, Bold H (1963) Some soil algae from enchanted rock and related algal species. Univiversity of Texas Publications, Austin
Bock C, Krienitz L, Pröschold T (2011) Taxonomic reassessment of the genus Chlorella (Trebouxiophyceae) using molecular signatures (barcodes), including description of seven new species. Fottea 11:293–312. https://doi.org/10.5507/fot.2011.028
Bold HC (1942) The cultivation of algae. Bot Rev 8:69–138
Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170
Borchhardt N, Baum C, Mikhailyuk T, Karsten U (2017a) Biological soil crusts of Arctic Svalbard—Water availability as potential controlling factor for microalgal biodiversity. Front Microbiol 8:1485. https://doi.org/10.3389/fmicb.2017.01485
Borchhardt N, Schiefelbein U, Abarca N et al (2017b) Diversity of algae and lichens in biological soil crusts of Ardley and King George Island, Antarctica. Antarct Sci 29:229–237
Borie I, Ibraheem M (2003) Preliminary survey of microalgal soil crusts in a xeric habitats (Wadi-Araba, eastern desert, Egypt). Egypt J Phycol 4:17–33
Breen K, Lévesque E (2008) The influence of biological soil crusts on soil characteristics along a high Arctic glacier foreland, Nunavut, Canada. Arctic Antarct Alp Res 40:287–297. https://doi.org/10.1657/1523-0430(06-098)
Broady PA (1976) Six new species of terrestrial algae from Signy Island, South Orkney Islands, Antarctica. Br Phycol J 11:387–405. https://doi.org/10.1080/00071617700650031
Broady P (1986) Ecology and taxonomy of the terrestrial algae of the Vestfold Hills. In: Pickard J (ed) Antarctic oasis: terrestrial environments and history of the Vestfold Hills. Academic Press, North Ryde, pp 165–202
Buchheim MA, Chapman RL (1991) Phylogeny of the colonial green flagellates: a study of 18S and 26S rRNA sequence data. BioSystems 25:85–100. https://doi.org/10.1016/0303-2647(91)90015-D
Büdel B (2001) Synopsis: comparative biogeography of soil-crust biota. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, Berlin, pp 141–152
Büdel B, Darienko T, Deutschewitz K et al (2009) Southern African biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Microb Ecol 57:229–247. https://doi.org/10.1007/s00248-008-9449-9
Büdel B, Dulic T, Darienko T et al (2016) Cyanobacteria and algae of biological soil crusts. In: Weber B, Büdel B, Belnap J (eds) Biological soil crusts: an organizing principle in drylands. Springer, Switzerland, pp 55–80
Casamatta DA, Johansen JR, Vis ML, Broadwater ST (2005) Molecular and morphological characterization of ten polar and near-polar strains within the Oscillatoriales (Cyanobacteria). J Phycol 41:421–438. https://doi.org/10.1111/j.1529-8817.2005.04062.x
Champenois J, Marfaing H, Pierre R (2015) Review of the taxonomic revision of Chlorella and consequences for its food uses in Europe. J Appl Phycol 27:1845–1851. https://doi.org/10.1007/s10811-014-0431-2
Chi W, Zheng L, He C et al (2017) Quorum sensing of microalgae associated marine Ponticoccus sp. PD-2 and its algicidal function regulation. AMB Express 7:59. https://doi.org/10.1186/s13568-017-0357-6
Chown S, Huiskes A, Gremmen N et al (2012) Continent-wide risk assessment for the establishment of nonindigenous species in Antarctica. PNAS 109:4938–4943
Colesie C, Gommeaux M, Green TGA, Büdel B (2014a) Biological soil crusts in continental Antarctica: garwood Valley, southern Victoria Land, and Diamond Hill, Darwin Mountains region. Antarct Sci 26:115–123. https://doi.org/10.1017/S0954102013000291
Colesie C, Green TGA, Türk R et al (2014b) Terrestrial biodiversity along the Ross Sea coastline, Antarctica: lack of a latitudinal gradient and potential limits of bioclimatic modeling. Polar Biol 37:1197–1208. https://doi.org/10.1007/s00300-014-1513-y
Concostrina-Zubiri L, Huber-Sannwald E, Martínez I et al (2013) Biological soil crusts greatly contribute to small-scale soil heterogeneity along a grazing gradient. Soil Biol Biochem 64:28–36. https://doi.org/10.1016/j.soilbio.2013.03.029
Cooper E, Wookey P (2001) Field measurements of the growth rates of forage lichens, and the implications of grazing by Svalbard reindeer. Symbiosis 31:173–186
Cox EJ (1996) Identification of freshwater diatoms from live material. Chapman & Hall, London
Cumbers J, Rothschild LJ (2014) Salt tolerance and polyphyly in the cyanobacterium Chroococcidiopsis (Pleurocapsales). J Phycol 50:472–482. https://doi.org/10.1111/jpy.12169
Czerwik-Marcinkowska J, Massalski A, Olech M, Wojciechowska A (2015) Morphology, ultrastructure and ecology of Muriella decolor (Chlorophyta) from subaerial habitats in Poland and the Antarctic. Polish Polar Res 36:163–174. https://doi.org/10.1515/popore
Darienko T, Gustavs L, Eggert A et al (2015) Evaluating the species boundaries of green microalgae (Coccomyxa, Trebouxiophyceae, Chlorophyta) using integrative taxonomy and DNA barcoding with further implications for the species identification in environmental samples. PLoS ONE 10:e0127838. https://doi.org/10.1371/journal.pone.0127838
de Wever A, Leliaert F, Verleyen E et al (2009) Hidden levels of phylodiversity in Antarctic green algae: further evidence for the existence of glacial refugia. Proc R Soc B Biol Sci 276:3591–3599. https://doi.org/10.1098/rspb.2009.0994
Dojani S, Kauff F, Weber B, Büdel B (2014) Genotypic and phenotypic diversity of Cyanobacteria in biological soil crusts of the succulent Karoo and Nama Karoo of Southern Africa. Microb Ecol 67:286–301. https://doi.org/10.1007/s00248-013-0301-5
Doyle JJ, Doyle JL, Ballenger JA et al (1997) A phylogeny of the chloroplast gene rbcL in the Leguminosae: taxonomic correlations and insights into the evolution of nodulation. Am J Bot 84:541–554. https://doi.org/10.2307/2446030
Elferink S, Neuhaus S, Wohlrab S et al (2017) Molecular diversity patterns among various phytoplankton size-fractions in West Greenland in late summer. Deep Res Part I Oceanogr Res Pap 121:54–69. https://doi.org/10.1016/j.dsr.2016.11.002
Elster J, Lukesova A, Svoboda J et al (1999) Diversity and abundance of soil algae in the polar desert, Sverdrup Pass, central Ellesmere Island. Polar Rec 35:231–254 (Gr Brit)
Ettl H, Gärtner G (2014) Syllabus der Boden-, Luft- und Flechtenalgen
Evans RD, Johansen JR (1999) Microbiotic crusts and ecosystem processes. CRC Crit Rev Plant Sci 18:183–225. https://doi.org/10.1016/S0735-2689(99)00384-6
Evans KM, Wortley AH, Mann DG (2007) An assessment of potential diatom “barcode” genes (cox1, rbcL, 18S and ITS rDNA) and their effectiveness in determining relationships in Sellaphora (Bacillariophyta). Protist 158:349–364. https://doi.org/10.1016/j.protis.2007.04.001
Førland EJ, Benestad R, Hanssen-Bauer I et al (2011) Temperature and precipitation development at Svalbard 1900–2100. Adv Meteorol. https://doi.org/10.1155/2011/893790
Frenot Y, Chown SL, Whinam J et al (2005) Biological invasions in the Antarctic: extent, impacts and implications. Biol Rev 80:45–72. https://doi.org/10.1017/S1464793104006542
Geisen S, Tveit AT, Clark IM et al (2015) Metatranscriptomic census of active protists in soils. ISME J 9:2178–2190. https://doi.org/10.1038/ismej.2015.30
Geitler L (1932) Cyanophyceae. Akadademische Verlagsgesellschaft M.B.H, Leipzig
Giełwanowska I, Olech M (2012) New ultrastructural and physiological features of the thallus in Antarctic lichens. Acta Biol Cracoviensia Ser Bot 54:40–52. https://doi.org/10.2478/v10182-012-0004-0
Greaves MP, Wilson MJ (1970) The degradation of nucleic acids and montmorillonite-nucleic-acid complexes by soil microorganisms. Soil Biol Biochem 2:257–268
Hall JD, Fucikova K, Lo C et al (2010) An assessment of proposed DNA barcodes in freshwater green algae. Cryptogam Algol 31:529–555
Hodač L, Hallmann C, Spitzer K et al (2016) Widespread green algae Chlorella and Stichococcus exhibit polar-temperate and tropical-temperate biogeography. FEMS Microbiol Ecol 92:1–16. https://doi.org/10.1093/femsec/fiw122
Hoham R (1975) Optimum temperatures and temperature ranges for growth of snow algae. Arct Alp Res 7:13–24
Holzinger A, Karsten U (2013) Desiccation stress and tolerance in green algae: consequences for ultrastructure, physiological, and molecular mechanisms. Front Plant Sci 4:327. https://doi.org/10.3389/fpls.2013.00327
John DM, Whitton BA, Brook AJ (2002) The freshwater algal flora of the British Isles: an identification guide to freshwater and terrestrial algae. Cambridge University Press, New York
Jones AK, Rhodes ME, Evans SC (1973) The use of antibiotics to obtain axenic cultures of algae. Br Phycol J 8:185–196. https://doi.org/10.1080/00071617300650211
Kastovská K, Elster J, Stibal M, Santrůcková H (2005) Microbial assemblages in soil microbial succession after glacial retreat in Svalbard (High Arctic). Microb Ecol 50:396–407. https://doi.org/10.1007/s00248-005-0246-4
Kawasaki Y, Nakada T, Tomita M (2015) Taxonomic revision of oil-producing green algae, Chlorococcum oleofaciens (Volvocales, Chlorophyceae), and its relatives. J Phycol 51:1000–1016. https://doi.org/10.1111/jpy.12343
Kawecka B (1986) Ecology of snow algae. Polish Polar Res 7:407–415
Kim M, Cho A, Lim HS et al (2015) Highly heterogeneous soil bacterial communities around Terra Nova Bay of Northern Victoria Land, Antarctica. PLoS ONE 10:e0119966. https://doi.org/10.1371/journal.pone.0119966
Klimke W, O’Donovan C, White O et al (2011) Solving the problem: genome annotation standards before the data deluge. Stand Genom Sci 5:168–193. https://doi.org/10.4056/sigs.2084864
Komárek J (2016) Review of the cyanobacterial genera implying planktic species after recent taxonomic revisions according to polyphasic methods: state as of 2014. Hydrobiologia 764:259–270. https://doi.org/10.1007/s10750-015-2242-0
Komárek J, Anagnostidis K (1998) Freshwater flora of Central Europe—Cyanoprokaryota, vol 1. Chroococcales. Springer, Berlin
Komárek J, Anagnostidis K (2005) Freshwater flora of Central Europe—Cyanoprokaryota, vol 2. Oscillatorialles. Springer, Berlin
Kopylova E, Noé L, Touzet H (2012) SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28:3211–3217. https://doi.org/10.1093/bioinformatics/bts611
Lee K, Eisterhold ML, Rindi F et al (2014) Isolation and screening of microalgae from natural habitats in the midwestern United States of America for biomass and biodiesel sources. J Nat Sci Biol Med 5:333. https://doi.org/10.4103/0976-9668.136178
Lee JR, Raymond B, Bracegirdle TJ et al (2017) Climate change drives expansion of Antarctic ice-free habitat. Nature 547:49–54. https://doi.org/10.1038/nature22996
Li Z, Shin HH, Lee T, Han M-S (2015) Resting stages of freshwater algae from surface sediments in Paldang Dam Lake, Korea. Nov Hedwigia 101:475–500. https://doi.org/10.1127/nova
Lind EM, Brook AJ (1980) A key to the commoner desmids of the English Lake District. Freshwater Biological Association
Lukešová A, Kociánová M, Váňa J et al (2010) Mud boils of the Giant Mts and Abisko Mts tundra—preliminary comparative study. Opera Corcon 47:55–82
Lürling M (2003) Phenotypic plasticity in the green algae Desmodesmus and Scenedesmus with special reference to the induction of defensive morphology. Ann Limnol 39:85–101. https://doi.org/10.1051/limn/2003014
Manoylov KM (2014) Taxonomic identification of algae (Morphological and molecular): species concepts, methodologies, and their implications for ecological bioassessment. J Phycol 50:409–424. https://doi.org/10.1111/jpy.12183
Margulies M, Egholm M, Altman WE et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–381. https://doi.org/10.1038/nature03959
Margulis L, Hinkle G, McKhann H, Moynihan B (1988) Mychonastes desiccatus Brown sp. nova (Chlorococcales, Chlorophyta)—an intertidal alga forming achlorophyllous desiccation-resistant cysts. Arch Hydrobiol Suppl Algol Stud 78:425–446
Massalski A, Mrozinska T, Olech M (1994) Ultrastructure of Lobosphaera reniformis (Watanabe) Komárek et fott (= Chlorellales) from King George Island, South Shetland Islands, Antarctica. Acta Soc Bot Pol 63:205–210
Massana R, del Campo J, Sieracki ME et al (2014) Exploring the uncultured microeukaryote majority in the oceans: reevaluation of ribogroups within stramenopiles. ISME J 8:854–866. https://doi.org/10.1038/ismej.2013.204
Matuła J, Pietryka M, Richter D, Wojtuń B (2007) Cyanoprokaryota and algae of Arctic terrestrial ecosystems in the Hornsund area, Spitsbergen. Polish Polar Res 28:283–315
Maturilli M, Herber A, König-Langlo G (2013) Climatology and time series of surface meteorology in Ny-Ålesund, Svalbard. Earth Syst Sci Data 5:155–163. https://doi.org/10.5194/essd-5-155-2013
Michel RFM, Schaefer CEGR, Simas FMB et al (2014) Active-layer thermal monitoring on the Fildes Peninsula, King George Island, maritime Antarctica. Solid Earth 5:1361–1374. https://doi.org/10.5194/se-5-1361-2014
Miller CS, Baker BJ, Thomas BC et al (2011) EMIRGE: reconstruction of full-length ribosomal genes from microbial community short read sequencing data. Genome Biol 12:R44. https://doi.org/10.1186/gb-2011-12-5-r44
Misawa S (1999) Rapid diagnosis of infectious diseases; features and limitations of the microscopic examination of clinical specimens. J Assoc Rapid Method Autom Microbiol 10:121–131
Nagao M, Arakawa K, Takezawa D et al (1999) Akinete formation in Tribonema bombycinum Derbes et Solier (Xanthophyceae) in relation to freezing tolerance. J Plant Res 112:163–174
Oren A (2005) A hundred years of Dunaliella research: 1905-2005. Saline Syst 1:2. https://doi.org/10.1186/1746-1448-1-2
Patova E, Davydov D, Vera A (2015) Cyanoprokaryotes and algae. In: Matveyeva M (ed) Plants and fungi of the polar deserts in the northern hemisphere. MAPAФOH, pp 133–164
Pawlowski J, Christen R, Lecroq B et al (2011) Eukaryotic richness in the abyss: insights from pyrotag sequencing. PLoS ONE 6:e18169. https://doi.org/10.1371/journal.pone.0018169
Peel MC, Finlayson BL, McMahon TA (2007) World map of the Köppen-Geiger climate classification updated. Hydrol Earth Syst Sci 11:1633–1644. https://doi.org/10.1127/0941-2948/2006/0130
Pereira EB, Evangelista H, Pereira KCD et al (2006) Apportionment of black carbon in the South Shetland Islands, Antartic Peninsula. J Geophys Res 111:D03303. https://doi.org/10.1029/2005JD006086
Peveling E, Galun M (1976) Electron-microscopical studies on the phycobiont Coccomyxa Schmidle. New Phytol 77:713–718. https://doi.org/10.1111/j.1469-8137.1976.tb04665.x
Pfaff S, Borchardt N, Boy J et al (2016) Desiccation tolerance and growth-temperature requirements of Coccomyxa (Trebouxiophyceae, Chlorophyta) strains from Antarctic biological soil crusts. Arch Hydrobiol Suppl Algol Stud 151:3–19. https://doi.org/10.1127/algol
Pointing SB, Belnap J (2012) Microbial colonization and controls in dryland systems. Nat Rev Microbiol 10:551–562. https://doi.org/10.1038/nrmicro2831
Pointing SB, Büdel B, Convey P et al (2015) Biogeography of photoautotrophs in the high polar biome. Front Plant Sci 6:692. https://doi.org/10.3389/fpls.2015.00692
Poonguzhali S, Madhaiyan M, Sa T (2007) Quorum-sensing signals produced by plant-growth promoting Burkholderia strains under in vitro and in planta conditions. Res Microbiol 158:287–294. https://doi.org/10.1016/j.resmic.2006.11.013
Prescott GW (1964) How to know the fresh-water algae. Plenum Press, New York
Pushkareva E, Pessi IS, Wilmotte A, Elster J (2015) Cyanobacterial community composition in Arctic soil crusts at different stages of development. FEMS Microbiol Ecol 91:fiv143. https://doi.org/10.1093/femsec/fiv143
Pushkareva E, Johansen JR, Elster J (2016) A review of the ecology, ecophysiology and biodiversity of microalgae in Arctic soil crusts. Polar Biol. https://doi.org/10.1007/s00300-016-1902-5
Rippin M, Komsic-Buchmann K, Becker B (2016) RNA isolation from biological soil crusts: methodological aspects. Arch Hydrobiol Suppl Algol Stud 151:21–37. https://doi.org/10.1127/algol
Rippka R, Deruelles J, Waterbury JB et al (1979) Generic assignments, strain histories and properties of pure cultures of Cyanobacteria. J Gen Microbiol 111:1–61. https://doi.org/10.1099/00221287-111-1-1
Rivasseau C, Farhi E, Compagnon E et al (2016) Coccomyxa actinabiotis sp. nov. (Trebouxiophyceae, Chlorophyta), a new green microalga living in the spent fuel cooling pool of a nuclear reactor. J Phycol 52:689–703. https://doi.org/10.1111/jpy.12442
Sanders RW, Caron DA, Davidson JM et al (2001) Nutrient acquisition and population growth of a mixotrophic alga in axenic and bacterized cultures. Microb Ecol 42:513–523. https://doi.org/10.1007/s00248-001-1024-6
Schloss PD, Handelsman J (2005) Metagenomics for studying unculturable microorganisms: cutting the Gordian knot. Genome Biol 6:229. https://doi.org/10.1186/gb-2005-6-8-229
Schmidle W (1901) Ueber drei Algengenera. Berichte der Dtsch Bot Gessellschaft 19:10–24
Schulz K, Mikhailyuk T, Dreßler M et al (2016) Biological soil crusts from coastal dunes at the Baltic Sea: Cyanobacterial and algal biodiversity and related soil properties. Microb Ecol 71:178–193. https://doi.org/10.1007/s00248-015-0691-7
Shen S (2008) Genetic diversity analysis with ISSR PCR on green algae Chlorella vulgaris and Chlorella pyrenoidosa. Chin J Oceanol Limnol 26:380–384. https://doi.org/10.1007/s00343-008-0380-1
Sherwood AR, Vis ML, Entwisle TJ et al (2008) Contrasting intra versus interspecies DNA sequence variation for representatives of the Batrachospermales (Rhodophyta): insights from a DNA barcoding approach. Phycol Res 56:269–279. https://doi.org/10.1111/j.1440-1835.2008.00508.x
Shi XL, Marie D, Jardillier L et al (2009) Groups without cultured representatives dominate eukaryotic picophytoplankton in the oligotrophic South East Pacific Ocean. PLoS ONE 4:e7657. https://doi.org/10.1371/journal.pone.0007657
Singh SP, Singh P (2015) Effect of temperature and light on the growth of algae species: a review. Renew Sustain Energy Rev 50:431–444. https://doi.org/10.1016/j.rser.2015.05.024
Škaloud P, Friedl T, Hallmann C et al (2016) Taxonomic revision and species delimitation of coccoid green algae currently assigned to the genus Dictyochloropsis (Trebouxiophyceae, Chlorophyta). J Phycol 52:599–617. https://doi.org/10.1111/jpy.12422
Skinner CE (1932) Isolation in pure culture of green algae from soil by a simple technique. Plant Physiol 7:533–537. https://doi.org/10.1104/pp.7.3.533
Solden L, Lloyd K, Wrighton K (2016) The bright side of microbial dark matter: lessons learned from the uncultivated majority. Curr Opin Microbiol 31:217–226. https://doi.org/10.1016/j.mib.2016.04.020
Starr RC, Jeffrey AZ (1993) UTEX—the culture collection of algae at the University of Texas at Austin 1993 list of cultures. J Phycol 29:1–106
Stoyanov P, Moten D, Mladenov R et al (2014) Phylogenetic relationships of some filamentous cyanoprokaryotic species. Evol Bioinform 10:39–49. https://doi.org/10.4137/EBo.s13748
Stoyneva M (2000) Soil algae in museum samples from some Southwest Asia sites I. Hist Nat Bulg 12:129–146
Taberlet P, Coissac E, Pompanon F et al (2012) Towards next-generation biodiversity assessment using DNA metabarcoding. Mol Ecol 21:2045–2050. https://doi.org/10.1111/j.1365-294X.2012.05470.x
Takeuchi N (2001) Seasonal and altitudinal variations in snow algal communities on an Alaskan glacier (Gulkana glacier in the Alaska range). Hydrol Process 15:3447–3459. https://doi.org/10.1088/1748-9326/8/3/035002
Thomas DN, Fogg T, Convey P et al (2008a) Introduction to the polar regions. In: Thomas DN (ed) The biology of polar regions. University Press, Oxford, pp 1–27
Thomas DN, Fogg T, Convey P et al (2008b) Periglacial and terrestrial habitats in polar regions. In: Thomas DN (ed) The biology of polar regions. University Press, Oxford, pp 53–100
Thompson AW, Foster RA, Krupke A et al (2012) Unicellular cyanobacterium symbiotic with a single-celled eukaryotic alga. Science 337:1546–1550
Thorn R, Lynch M (2007) Fungi and eukaryotic algae. In: Paul EA (ed) Soil microbiology, ecology, and biochemistry. Elsevier, Oxford, pp 145–162
Tschaikner A, Ingolic E, Gärtner G (2007) Observations in a new isolate of Coelastrella terrestris (Reisigl) Hegewald & Hanagata (Chlorophyta, Scenedesmaceae) from Alpine Soil (Tyrol, Austria). Phyton (B Aires) 46:237–245
Urich T, Lanzén A, Qi J et al (2008) Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome. PLoS ONE 3:e2527. https://doi.org/10.1371/journal.pone.0002527
Urich T, Lanzén A, Stokke R et al (2014) Microbial community structure and functioning in marine sediments associated with diffuse hydrothermal venting assessed by integrated meta-omics. Environ Microbiol 16:2699–2710. https://doi.org/10.1111/1462-2920.12283
Uzunov BA, Stoyneva MP, Gärtner G, Koefler W (2008) First record of Coelastrella species (Chlorophyta: Scenedesmaceae) in Bulgaria. Berichte des naturwissenschaftlichen-medizinischen Verein Innsbruck 95:27–34
Vartoukian SR, Palmer RM, Wade WG (2010) Strategies for culture of “unculturable” bacteria. FEMS Microbiol Lett 309:1–7. https://doi.org/10.1111/j.1574-6968.2010.02000.x
Vieira HH, Bagatini IL, Guinart CM, Vieira AAH (2016) tufA gene as molecular marker for freshwater Chlorophyceae. Algae 31:155–165. https://doi.org/10.4490/algae.2016.31.4.14
Vishnivetskaya TA (2009) Viable Cyanobacteria and green algae from the permafrost darkness. Permafrost soils. Springer, Heidelberg, pp 73–84
Vogel S (1955) Niedere “Fensterpflanzen” in der Südafrikanischen Wüste: Eine ökologische Schilderung. Duncker & Humblot
Vogel S, Eckerstorfer M, Christiansen HH (2012) Cornice dynamics and meteorological control at Gruvefjellet, Central Svalbard. Cryosph 6:157–171. https://doi.org/10.5194/tc-6-157-2012
Wang NF, Zhang T, Zhang F et al (2015) Diversity and structure of soil bacterial communities in the Fildes Region (maritime Antarctica) as revealed by 454 pyrosequencing. Front Microbiol 6:1188. https://doi.org/10.3389/fmicb.2015.01188
Ward DM, Weller R, Bateson MM (1990) 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 345:63–65. https://doi.org/10.1038/346183a0
Waterbury JB, Stanier RY (1978) Patterns of growth and development in pleurocapsalean Cyanobacteria. Microbiol Rev 42:2–44
Williams P (2007) Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiology 153:3923–3938. https://doi.org/10.1099/mic.0.2007/012856-0
Williams L, Loewen-Schneider K, Maier S, Büdel B (2016) Cyanobacterial diversity of western European biological soil crusts along a latitudinal gradient. FEMS Microbiol Ecol 92:fiw157. https://doi.org/10.1093/femsec/fiw157
Williams L, Borchhardt N, Colesie C et al (2017) Biological soil crusts of Arctic Svalbard and of Livingston Island, Antarctica. Polar Biol 40:399–411. https://doi.org/10.1007/s00300-016-1967-1
Wilmotte A (1994) Molecular evolution and taxonomy of the Cyanobacteria. In: Bryant D (ed) The molecular biology of cyanobacteria. Springer, Dordrecht, pp 1–25
Wu HL, Hseu RS, Lin LP (2001) Identification of Chlorella spp. isolates using ribosomal DNA sequences. Bot Bull Acad Sin 42:115–121
Wu Z, Duangmanee P, Zhao P et al (2016) The effects of light, temperature, and nutrition on growth and pigment accumulation of three Dunaliella salina strains isolated from saline soil. Jundishapur J Microbiol 9:e26732. https://doi.org/10.5812/jjm.26732
Yoon T-H, Kang H-E, Kang C-K et al (2016) Development of a cost-effective metabarcoding strategy for analysis of the marine phytoplankton community. PeerJ 4:e2115. https://doi.org/10.7717/peerj.2115
Yoshitake S, Uchida M, Koizumi H et al (2010) Production of biological soil crusts in the early stage of primary succession on a high Arctic glacier foreland. New Phytol 186:451–460. https://doi.org/10.1111/j.1469-8137.2010.03180.x
Zidarova R (2008) Algae from Livingston Island (S Shetland Islands): a checklist. Phytol Balc 14:19–35
Acknowledgements
This study was funded by the Deutsche Forschungsgemeinschaft (DFG) within the project ‘Polarcrust’ (BE1779/18-1, KA899/23-1, BU666/17-1) which is part of the Priority Program 1158 ‘Antarctic Research’. We also thank the AWIPEW station, the Instituto Antártico Chileno, the Spanish Antarctic Committee and the Juan Carlos I Antarctic Base for their logistic support. Sampling and research activities were approved by the German authorities (Umwelt Bundesamt: Biological soil crust algae from the polar regions; 24.09.2014).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Rippin, M., Borchhardt, N., Williams, L. et al. Genus richness of microalgae and Cyanobacteria in biological soil crusts from Svalbard and Livingston Island: morphological versus molecular approaches. Polar Biol 41, 909–923 (2018). https://doi.org/10.1007/s00300-018-2252-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00300-018-2252-2
Keywords
- Biological soil crust
- Eukaryotic algae
- Cyanobacteria
- Morphological identification
- Metatranscriptomics