Advertisement

Polar Biology

, Volume 41, Issue 5, pp 877–896 | Cite as

Phylogeography and demographic history of the Pacific smelt Osmerus dentex inferred from mitochondrial DNA variation

  • Lubov A. Skurikhina
  • Alla G. Oleinik
  • Andrey D. Kukhlevsky
  • Natalia E. Kovpak
  • Sergey V. Frolov
  • Dmitriy S. Sendek
Original Paper
  • 167 Downloads

Abstract

The Pacific smelt Osmerus dentex is widely distributed in the North Pacific and Arctic seas and belongs to the species that may shed light on the biogeography and evolutionary history of Arctic marine fauna. O. dentex came into existence in the northwestern Pacific at the Pliocene–Pleistocene border and could widely spread along the Eurasian and North American coasts. We assessed the impact of global climatic and geological changes on the formation of the genetic structure of O. dentex in the Eurasian parts of the species area using a variety of phylogenetic methods and molecular dating. The results were interpreted in conjunction with paleoclimatic evidence. Phylogeographic patterns based on cytb and coI sequences, and RFLP ND3/ND4L/ND4 and A8/A6/COIII/ND3 mtDNA regions for 462 Pacific smelts from 25 Eurasian locations were analyzed. Our results suggest that (1) geographical distribution observed for mtDNA haplotypes resulted from influences of historical range expansions, episodes of long-distance colonization and restricted dispersal; (2) the main refugium was located in the northwestern Pacific and the genetic similarities observed among and within geographical regions probably originated from postglacial recolonization from common sources; (3) an additional small refugium in the White Sea existed in the Late Pleistocene.

Keywords

Osmerus dentex Pacific smelt mtDNA genealogy Phylogeography Demographic history 

Notes

Acknowledgements

This study was performed with partial financial support from the Russian Science Center (Grant no. 14-50-00034). We are grateful to T. N. Koznova for help in the translation of the manuscript into English.

Supplementary material

300_2018_2250_MOESM1_ESM.pdf (535 kb)
Supplementary material 1 (PDF 534 kb)
300_2018_2250_MOESM2_ESM.pdf (666 kb)
Supplementary material 2 (PDF 666 kb)

References

  1. Afanas’ev KI, Rubtsova GA, Shitova MV et al (2011) Population structure of chum salmon Oncorhynchus keta in the Russian Far East, as revealed by microsatellite markers. Russ J Mar Biol 37:42–51CrossRefGoogle Scholar
  2. Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, CambridgeGoogle Scholar
  3. Avise JC, Arnold J, Ball RM et al (1987) Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Ann Rev Ecol Syst 18:489–522CrossRefGoogle Scholar
  4. Bernatchez L (1997) Mitochondrial DNA analysis confirms the existence of two glacial races of rainbow smelt Osmerus mordax and their reproductive isolation in the St. Lawrence River estuary (Quebec, Canada). Mol Ecol 6:73–83CrossRefGoogle Scholar
  5. Bernatchez L, Martin S (1996) Mitochondrial DNA diversity in anadromous Rainbow Smelt, Osmerus mordax mitchill: a genetic assessment of the member-vagrant hypothesis. Can J Fish Aquat Sci 53:424–433CrossRefGoogle Scholar
  6. Bernatchez L, Wilson CC (1998) Comparative phylogeography of nearctic and palearctic fishes. Mol Ecol 7:431–452CrossRefGoogle Scholar
  7. Bradbury IR, Campana SE, Bentzen P (2008) Low genetic connectivity in an estuarine fish with pelagic larvae. Can J Fish Aquat Sci 65:147–158CrossRefGoogle Scholar
  8. Bradbury IR, Coulson MW, Cook AM, Bentzen P (2010) Evidence for divergence and adaptive isolation in post-glacially derived bimodal allopatric and sympatric rainbow smelt populations. Biol J Linn Soc 101:583–594CrossRefGoogle Scholar
  9. Bradbury IR, Coulson MW, Campana SE, Paterson IG, Bentzen P (2011) Contemporary nuclear and mitochondrial genetic clines in a north temperate estuarine fish reflect Pleistocene vicariance. Mar Ecol Prog Ser 438:207–218CrossRefGoogle Scholar
  10. Canino MF, Spies IB, Cunningham KM, Hauser L, Grand WS (2010) Multiple ice-age refugia in Pacific cod, Gadus macrocephalus. Mol Ecol 19:4339–4351CrossRefPubMedGoogle Scholar
  11. Chereshnev IA (1996) Biological diversity of freshwater fish fauna in the Russian north-east. Dalnauka, Vladivostok (in Russian) Google Scholar
  12. Churikov D, Gharrett AJ (2002) Comparative phylogeography of the two pink salmon broodlines: an analysis based on a mitochondrial DNA genealogy. Mol Evol 11:1077–1101Google Scholar
  13. Costello AB, Down TE, Pollard SM, Pacas CJ, Taylor EB (2003) The influence of history and contemporary stream hydrology on the evolution of genetic diversity within species: an examination of microsatellite DNA variation in bull trout, Salvelinus confluentus (Pisces: Salmonidae). Evolution 57:328–344CrossRefPubMedGoogle Scholar
  14. Coulson MW (2014) Historical and contemporary processes shaping population genetic structure in an anadromous fish (Osmerus mordax). Dalhousie University Halifax, Nova ScotiaGoogle Scholar
  15. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772CrossRefPubMedPubMedCentralGoogle Scholar
  16. Demidov IN, Houmark-Nielsen M, Kjær KH et al (2004) Valdaian glacial maxima in the Arkhangelsk district of northwestern Russia. In: Ehlers J, Gibbard PI (eds) Quaternary glaciations—extent and chronology, vol 2. part 1. Elsevier, Amsterdam, pp 321–336Google Scholar
  17. Demidov IN, Houmark-Nielsen M, Kjær KH, Larsen E (2006) The last scandinavian ice sheet in northwestern Russia: ice flow patterns and decay dynamics. Boreas 35:425–443CrossRefGoogle Scholar
  18. Demidov IN, Larsen EA, Kjær KH, Houmark-Nielsen M (2007) Stratigraphy of the late Pleistocene of the southern part of Belomorsky Basin. In: Morozov AF (ed), Regional geology and metallogeny, vol 30–31. VSEGEI, St. Petersburg, pp 179–189 (in Russian)Google Scholar
  19. Dodson JJ, Tremblay S, Colombani F, Carscadden JE, Lecomte F (2007) Trans-Arctic dispersals and the evolution of a circumpolar marine fish species complex, the capelin (Mallotus villosus). Mol Ecol 16:5030–5043CrossRefPubMedGoogle Scholar
  20. Dodson JJ, Bourret A, Barrette MF, Turgeon J, Daigle G, Legault M, Lecomte F (2015) Intraspecific genetic admixture and the morphological diversification of an estuarine fish population complex. PLoS ONE.  https://doi.org/10.1371/journal.pone.0123172 Google Scholar
  21. Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973CrossRefPubMedPubMedCentralGoogle Scholar
  22. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Res 10:564–567CrossRefGoogle Scholar
  23. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedPubMedCentralGoogle Scholar
  24. Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925PubMedPubMedCentralGoogle Scholar
  25. Garvin MR, Kondzela CM, Martin PC et al (2013) Recent physical connections may explain weak genetic structure in western Alaskan chum salmon (Oncorhynchus keta) populations. Ecol Evol 3:2362–2377CrossRefPubMedPubMedCentralGoogle Scholar
  26. Gharrett AJ, Gray AK, Brykov VA (2001) Mitochondrial DNA variation in Alaskan coho salmon, Oncorhynchus kisutch. Fish Bull 99:528–544Google Scholar
  27. Gladenkov AYu, Gladenkov YuB (2004) Onset of connections between the Pacific and Arctic oceans through the Bering strait in the neogene. Strat Geol Correl 12:175–187Google Scholar
  28. Gritzenko OF (1975) Systematics and origin of Sakhalin chars of the genus Salvelinus. Okeanologiya 106:141–160 (in Russian) Google Scholar
  29. Hardy SM, Carr CM, Hardman M, Steinke D, Corstorphine E, Mah C (2011) Biodiversity and phylogeography of Arctic marine fauna: insights from molecular tools. Mar Biodivers 41:195–210CrossRefGoogle Scholar
  30. Harpending RC (1994) Signature of ancient population growth in a low resolution mitochondrial DNA mismatch distribution. Hum Biol 66:591–600PubMedGoogle Scholar
  31. Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. Philos Trans R Soc Lond B 359:183–195CrossRefGoogle Scholar
  32. Ibrahim KM, Nichols RA, Hewitt GM (1996) Spatial patterns of genetic variation generated by different forms of dispersal during range expansion. Heredity 77:282–291CrossRefGoogle Scholar
  33. Ilves KL, Taylor EB (2007) Are Hypomesus chishimaensis and H. nipponensis (Osmeridae) distinct species? A molecular assessment using comparative sequence data from five genes. Copeia 1:180–185CrossRefGoogle Scholar
  34. Ilves KL, Taylor EB (2008) Evolutionary and biogeographical patterns within the smelt genus Hypomesus in the North Pacific ocean. J Biogeogr 35:48–64Google Scholar
  35. Ishida S, Taylor DJ (2007) Mature habitats associated with genetic divergence despite strong dispersal ability in an arthropod. BMC Evol Biol 7:52CrossRefPubMedPubMedCentralGoogle Scholar
  36. Itoh Y, Nakajima N, Takemura A (1997) Neogene deformation of the back-arc shelf of Southwest Japan and its impact on the palaeoenvironments of the Japan Sea. Tectonophysics 281:71–82CrossRefGoogle Scholar
  37. Jolivet L, Tamaki K, Fournier M (1994) Japan Sea, opening history and mechanism: a synthesis. J Geophys Res 99:22237–22259CrossRefGoogle Scholar
  38. Kai Y, Orr JW, Sakai K, Nakabo T (2011) Genetic and morphological evidence for cryptic diversity in the Careproctus rastrinus species complex (Liparidae) of the North Pacific. Ichthyol Res 58:143–154CrossRefGoogle Scholar
  39. Keigwin LD, Gorbarenko SA (1992) Sea level, surface salinity of the Japan Sea, and the younger dryas event in the Northwestern Pacific ocean. Quatern Res 37:346–360CrossRefGoogle Scholar
  40. Kjær KH, Demidov IN, Larsen E, Murray A, Nielsen JK (2003) Mezen Bay—a key area for understanding Weichselian glaciations in northern Russia. J Quat Sci 18:73–93CrossRefGoogle Scholar
  41. Klyukanov VA (1975) The status of Osmeridae in the system of order Salmoniformes. J Ichthyol 15:3–20 (in Russian) Google Scholar
  42. Klyukanov VA (1977) Origin, distribution and evolution of Osmeridae. In: Scarlato OA (ed) The principles of the classification and phylogeny of the salmonid fishes. Zool Inst AN SSSR, Leningrad, pp 13–27 (in Russian) Google Scholar
  43. Knowles LL, Maddison WP (2002) Statistical phylogeography. Mol Ecol 11:2623–2635CrossRefPubMedGoogle Scholar
  44. Kokita T, Nohara T (2011) Phylogeography and historical demography of the anadromous fish Leucopsarion petersii in relation to geological history and oceanography around the Japanese Archipelago. Mol Ecol 20:143–164CrossRefPubMedGoogle Scholar
  45. Kovpak NE, Skurikhina LA, Kukhlevsky AD (2011) Genetic divergence and relationships among smelts of the genus Osmerus from the Russian waters. Russ J Genet 47:958–972CrossRefGoogle Scholar
  46. Laakkonen HM, Lajus DL, Strelkov P, Väinölä R (2013) Phylogeography of amphi-boreal fish: tracing the history of the Pacific herring Clupea pallasii in north-east European seas. BMC Evol Biol 13:67CrossRefPubMedPubMedCentralGoogle Scholar
  47. Lambeck K, Purcell A, Funder S, Kjær KH, Larsen E, Möller P (2006) Constraints on the late Saalian to early middle Weichselian ice sheet of Eurasia from field data and rebound modelling. Boreas 35:539–575CrossRefGoogle Scholar
  48. Larsen E, Kjaer KH, Demidov IN et al (2006) Late Pleistocene glacial and lake history of northwestern Russia. Boreas 35:394–424CrossRefGoogle Scholar
  49. Lecomte F, Dodson JJ (2004) Role of early life-history constraints and resource polymorphism in the segregation of sympatric populations of an estuarine fish. Evol Ecol Res 6:631–658Google Scholar
  50. Lecomte F, Grant WS, Dodson JJ, Rodrhguez-Sánchez R, Bowen BW (2004) Living with uncertainty: genetic imprints of climate shifts in East Pacific anchovy (Engraulis mordax) and sardine (Sardinops sagax). Mol Ecol 13:2169–2182CrossRefPubMedGoogle Scholar
  51. Lindholm M, d’Auriac MA, Thaulow J, Hobæk A (2016) Dancing around the pole: holarctic phylogeography of the Arctic fairy shrimp Branchinecta paludosa (Anostraca, Branchiopoda). Hydrobiologia 772:189–205CrossRefGoogle Scholar
  52. Liu JX, Gao TX, Wu SF, Zhang YP (2007) Pleistocene isolation in the Northwestern Pacific marginal seas and limited dispersal in a marine fish, Chelon haematocheilus (Temminck and Schlegel 1845). Mol Ecol 16:275–288CrossRefPubMedGoogle Scholar
  53. Liu JX, Tatarenkov A, Beacham TD, Gorbachev V, Wildes S, Avise JC (2011) Effects of Pleistocene climatic fluctuations on the phylogeographic and demographic histories of Pacific herring (Clupea pallasii). Mol Ecol 20:3879–3893CrossRefPubMedGoogle Scholar
  54. Mangerud J, Astakhov VI, Svendsen JI (2002) The extent of the Barents-Kara ice sheet during the last glacial maximum. Quat Sci Rev 21:111–119CrossRefGoogle Scholar
  55. Mangerud J, Jakobsson M, Alexanderson H et al (2004) Ice-dammed lakes, rerouting of the drainage of Northern Eurasia during the last glaciation. Quat Sci Rev 23:1313–1332CrossRefGoogle Scholar
  56. McAllister DE (1963) A revision of the smelt family Osmeridae. Bull Nat Mus Can 191:1–53Google Scholar
  57. McElroy D, Moran P, Bermingham E, Kornfield I (1992) REAP: an integrated environment for the manipulation and phylogenetic analysis of restriction data. Heredity 83:153–158Google Scholar
  58. Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variation in populations. Evolution 29:1–10CrossRefPubMedGoogle Scholar
  59. Nellbring S (1989) The ecology of smelts (genus Osmerus): a literature review. Nord J Freshwater Res 65:116–145Google Scholar
  60. Oleinik AG, Skurikhina LA, Brykov VA (2007) Divergence of Salvelinus species from northeastern Asia based on mitochondrial DNA. Ecol Freshwater Fish 16:87–98CrossRefGoogle Scholar
  61. Oleinik AG, Skurikhina LA, Chukova EI (2010) Phylogeography of southern Asian Dolly Varden charr Salvelinus malma krascheninnikovi: genealogical analysis of mitochondrial DNA. Russ J Genet 46:198–209CrossRefGoogle Scholar
  62. Oleinik AG, Skurikhina LA, Bondar EI, Brykov VA (2014) Phylogeography of northern Dolly Varden Salvelinus malma malma based on analysis of mitochondrial DNA. J Zool Syst Evol Res 52:293–304CrossRefGoogle Scholar
  63. Pigeon D, Dodson JJ, Bernatchez L (1998) A mtDNA analysis of spatiotemporal distribution of two sympatric larval populations of rainbow smelt (Osmerus mordax) in the St. Lawrence river estuary, Quebec, Canada. Can J Fish Aquat Sci 55:1739–1747CrossRefGoogle Scholar
  64. Pletnev SP (2004) Geological development of Sakhalin Island. In: Storozhenko SYu, Bogatov VV, Barkalov VYu, LeleiAS, Makarchenko EA (eds). Flora and fauna of Sakhalin Island (Materials of International Sakhalin Island Project), Part 1. Dalnauka, Vladivostok, pp 11–23 (in Russian)Google Scholar
  65. Pletnev SP (2012) Paleogeography of sedimentary basins of the west Pacific (Late Cretaceous-Cenozoic). Extended abstract of doctoral (geography) Dissertation. Dalnauka, Vladivostok. (in Russian)Google Scholar
  66. Polyakova NE, Semina AV, Brykov VA (2006) The variability in Chum Salmon Oncorhynchus keta (Walbaum) mitochondrial DNA and its connection with the paleogeological events in the northwest Pacific. Russ J Genet 42:1164–1171CrossRefGoogle Scholar
  67. Posada D, Crandall KA, Templeton AR (2000) GeoDis: a program for the cladistic nested analysis of the geographical distribution of genetic haplotypes. Mol Ecol 9:487–488CrossRefPubMedGoogle Scholar
  68. Rambaut A, Drummond AJ (2007) Tracer [computer program]. http://tree.bio.ed.ac.uk/software/tracer/
  69. Roff D, Bentzen P (1989) The statistical analysis of mitochondrial DNA polymorphisms: Chi square and the problem of small samples. Mol Biol Evol 5:539–545Google Scholar
  70. Rogers A, Harpending H (1992) Population growth makes waves in the distribution of pairwise differences. Mol Biol Evol 9:552–569PubMedGoogle Scholar
  71. Ronquist F, van der Mark P, Huelsenbeck JP (2009) Bayesian phylogenetic analysis using MrBayes. In: Lemey P, Salemi M, Vandamme AM (eds) The phylogenetic handbook: a practical approach to phylogenetic analysis and hypothesis testing, 2nd edn. Cambridge University Press, Cambridge, pp 111–141Google Scholar
  72. Salmenkova EA, Omel’chenko VT, Altukhov YP (1992) Genogeographic investigation of chum salmon Oncorhynchus keta (Walbaum), populations of Asian part of species area. Russ J Genet 28:76–92Google Scholar
  73. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  74. Schneider S, Excoffier L (1999) Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA. Genetics 152:1079–1089PubMedPubMedCentralGoogle Scholar
  75. Shafer ABA, Cullingham CI, Côté SD, Coltman DW (2010) Of glaciers and refugia: a decade of study sheds new light on the phylogeography of northwestern North America. Mol Ecol 19:4589–4621CrossRefPubMedGoogle Scholar
  76. Skurikhina LA, Oleinik AG, Kukhlevsky AD, Malyar VV (2013) Intraspecific polymorphism of mtDNA in Sakhalin taimen Parahucho perryi. Russ J Genet 49:924–936CrossRefGoogle Scholar
  77. Skurikhina LA, Oleinik AG, Kukhlevsky AD, Kovpak NE, Sendek DS, Maznikova OA (2015) Genetic differentiation of pacific smelt Osmerus mordax dentex inferred from the data of mitochondrial DNA analysis. Russ J Genet 51:1221–1232CrossRefGoogle Scholar
  78. Smith GR (1992) Introgression in fishes: significance for paleontology, cladistics, and evolutionary rates. Syst Biol 41:41–57CrossRefGoogle Scholar
  79. Stamford MD, Taylor EB (2004) Phylogeographical lineages of Arctic grayling (Thymallus arcticus) in North America: divergence, origins, and affinities with Eurasian Thymallus. Mol Ecol 13:1533–1549CrossRefPubMedGoogle Scholar
  80. Stewart JR, Lister AM, Barnes I, Dalén L (2010) Refugia revisited: individualistic responses of species in space and time. Proc R Soc B 277:661–671CrossRefPubMedGoogle Scholar
  81. Svendsen JI, Alexanderson H, Astakhov VI et al (2004) Late Quaternary ice sheet history of northern Eurasia. Quat Sci Rev 23:1229–1271CrossRefGoogle Scholar
  82. Svitoch AA (2003) Marine pleistocene of the Russian coasts. GEOS, Moscow (in Russian) Google Scholar
  83. Tada R, Irino T, Koizumi I (1999) Land-ocean linkages over orbital and millennial timescales recorded in late Quaternary sediments of the Japan Sea. Paleoceanography 14:236–247CrossRefGoogle Scholar
  84. Taira A (2001) Tectonic evolution of the Japanese island arc system. Annu Rev Earth Planet Sci 29:109–134CrossRefGoogle Scholar
  85. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595PubMedPubMedCentralGoogle Scholar
  86. Taylor EB, Bentzen P (1993) Evidence for multiple origins and sympatric divergence of trophic ecotypes of smelt (Osmerus) in northeastern North America. Evol 47:813–832CrossRefGoogle Scholar
  87. Taylor EB, Dodson JJ (1994) A molecular analysis of relationships and biogeography within a species complex of Holarctic fish (genus Osmerus). Mol Ecol 3:235–248CrossRefPubMedGoogle Scholar
  88. Taylor EB, Stamford MD, Baxter JS (2003) Population subdivision in west slope cutthroat trout (Oncorhynchus clarki lewisi) at the northern periphery of its range: evolutionary inferences and conservation implications. Mol Ecol 12:2609–2622CrossRefPubMedGoogle Scholar
  89. Templeton AR (1998) Nested clade analyses of phylogeographic data: testing hypotheses about gene flow and population history. Mol Ecol 7:381–398CrossRefPubMedGoogle Scholar
  90. Templeton AR, Routman E, Phillips CA (1995) Separating population structure from population history: a cladistic analysis of the geographical distribution of mitochondrial DNA haplotypes in the tiger salamander, Ambistoma tigrinum. Genetics 140:767–782PubMedPubMedCentralGoogle Scholar
  91. Tonteri A, Titov S, Veselov AJ et al (2005) Phylogeography of anadromous and non-anadromous Atlantic salmon (Salmo salar) from northern Europe. Ann Zool Fennici 41:1–22Google Scholar
  92. Varnavskaya NV (2006) Genetic differentiation of Pacific Salmon populations. Kamchatka Res Ins Fisheries and Oceanography, Petropavlovsk-Kamchatski (in Russian) Google Scholar
  93. Vasilenko YuP, Gorbarenko SA (2011) Ice cover changes of the Sea of Okhotsk during late pleistocene glaciation and holocene. Herald of Far Eastern Branch RAN. 2:70–77 (in Russian) Google Scholar
  94. Weider LJ, Hobæk A (2000) Phylogeography and Arctic biodiversity: a review. Ann Zool Fennici 37:217–231Google Scholar
  95. Whitehead PJP (1985) Clupeoid fishes of the world. An annotated and illustrated catalogue of the herrings, sardines, pilchards, sprats, anchovies and wolfherrings. Part 1: Chirocentridae, Clupeidae and Pristigasteridae. FAO Fish Synop (125) 7. FAO, RomeGoogle Scholar
  96. Wilson AB, Veraguth IE (2010) The impact of pleistocene glaciation across the range of a widespread European coastal species. Mol Ecol 19:4535–4553CrossRefPubMedGoogle Scholar
  97. Yamamoto S, Morita K, Kitano S, Watanabe K, Koizumi I, Maekawa K, Takamura K (2004) Phylogeography of white-spotted charr (Salvelinus leucomaenis) inferred from mitochondrial DNA sequences. Zool Sci 21:229–240CrossRefPubMedGoogle Scholar
  98. Yamamoto S, Maekawa K, Morita K, Crane PA, Oleinik AG (2014) Phylogeography of the Salmonid fish, Dolly Varden (Salvelinus malma): multiple glacial Refugia in the North Pacific Rim. Zool Sci 31:660–670CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Lubov A. Skurikhina
    • 1
  • Alla G. Oleinik
    • 1
  • Andrey D. Kukhlevsky
    • 1
    • 2
  • Natalia E. Kovpak
    • 1
  • Sergey V. Frolov
    • 1
  • Dmitriy S. Sendek
    • 3
  1. 1.Genetics Laboratory of A.V. Zhirmunsky Institute of Marine Biology, National Scientific Center of Marine Biology, Far Eastern BranchRussian Academy of SciencesVladivostokRussia
  2. 2.Department of GeneticsFar Eastern Federal UniversityVladivostokRussia
  3. 3.State Research Institute of Lake and River FisheriesSt. PetersburgRussia

Personalised recommendations