Polar Biology

, Volume 41, Issue 4, pp 663–678 | Cite as

Appendicularians and copepods from Scotia Bay (Laurie island, South Orkney, Antarctica): fluctuations in community structure and diversity in two contrasting, consecutive summers

  • Mariela L. Spinelli
  • Claudio Franzosi
  • Héctor Olguin Salinas
  • Fabiana L. Capitanio
  • Viviana A. Alder
Original Paper
  • 35 Downloads

Abstract

Coastal Antarctic waters involve habitats of high primary and secondary production with a remarkable sensitivity to environmental changes on different spatio-temporal scales. The current study is the first comprehensive approach to the spatial distribution and the fluctuations in abundance, biomass, community structure, and diversity of the mesozooplankton from different habitats located in Scotia Bay in summers: 2014 and 2015, characterized by a different timing in seasonal sea ice retreat. Mean seawater temperature and abundances of calanoids, cyclopoids, nauplii, and appendicularians were one order of magnitude higher in summer 2014. Despite these environmental differences, biomass values of these groups proved similar for both summers. A total of ten species of copepods and one of appendicularians (Fritillaria borealis) were identified. Oithonid copepods—O. similis, followed by O. frigida—represented the bulk of mesozooplankton abundances in both summers. The highest total mesozooplankton abundance (2111 ind m−3) and biomass (14075 µg C m−3) were found next to an Adélie penguin breeding area (2014), while the highest Shannon index values were found next to a glacier in both summers. Multivariate analyses based on species abundance showed two main groups of sites, one of them encompassing all summer 2014 samplings and the other comprising all summer 2015 samplings. The positive correlation between O. similis and the 2–10 μm Chl-a fraction suggests that summer 2014 represented optimal conditions—in terms of food—for the growth and development of this species. Experimental studies based on natural prey assemblages revealed that O. similis feeds on flagellates rather than on diatoms.

Keywords

Mesozooplankton Oithona similis Fritillaria borealis Biomass Community structure Feeding rates 

Notes

Acknowledgements

We thank M. Yaya, I. Hoermann, S. Gorini, and J. Zocatelli (Dirección Nacional del Antártico) for their assistance during sampling. Thanks are due also to the Instituto Antártico Argentino and Dirección Nacional del Antártico for providing logistic support, to the Orcadas Base personnel for their cooperation, and to the reviewers for helping to improve the manuscript. This study was supported by a fellowship granted to M.S. by CONICET, Argentina, and by funds assigned to V.A.’s project PICT-O 2010-0128 (FONCYT and Instituto Antártico Argentino).

References

  1. Aguirre G (2015) Ecología del mesozooplancton marino en ambientes costeros de altas latitudes: Canal Beagle (extremo sur de Sudamérica) y Caleta Potter (Isla 25 de Mayo, Antártida). Dissertation, University of Buenos AiresGoogle Scholar
  2. Atkinson A (1994) Diets and feeding selectivity among the epipelagic copepod community near South Georgia in summer. Polar Biol 14:551–560CrossRefGoogle Scholar
  3. Atkinson A (1998) Life cycle strategies of epipelagic copepods in the Southern Ocean. J Mar Syst 15:289–311CrossRefGoogle Scholar
  4. Atkinson A, Ward P, Murphy EJ (1996) Die1 periodicity of subantarctic copepods: relationships between vertical migration, gut fullness and gut evacuation rate. J Plankton Res 18:1387–1405CrossRefGoogle Scholar
  5. Atkinson A, Ward P, Hunt BPV et al (2012) An overview of Southern Ocean zooplankton data: abundance, biomass, feeding and functional relationships. CCAMLR Sci 19:171–218Google Scholar
  6. Balzarini MG, Gonzalez L, Tablada M et al (2008) Manual del Usuario. Editorial Brujas, ArgentinaGoogle Scholar
  7. Båmstedt U, Fyhn HJ, Martinussen MB et al (2005) Seasonal distribution, diversity and biochemical composition of appendicularians in Norwegian fjords. In: Gorsky G, Youngbluth M (eds) Response of marine ecosystem to global change: ecological impact of appendicularians. GB Scientific Publisher, pp 233–259Google Scholar
  8. Barnes DKA (1995) Sublittoral epifaunal communities at Signy Island, Antarctica. I. The ice-foot zone. Mar Biol 121:555–563CrossRefGoogle Scholar
  9. Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Springer, New YorkCrossRefGoogle Scholar
  10. Böttger-Schnack R (1985) Untersuchungen zur Verteilung der kleinen Metazoa im Plankton des Roten Meeres, unter besonderer Beru¨cksichtigung cyclopoider und harpacticoider Copepoden. Dissertation, University of HamburgGoogle Scholar
  11. Bradford-Grieve JM, Markhaseva EL, Rocha CEF, Abiahy B (1999) Copepoda. In: Boltovskoy D (ed) South Atlantic Zooplankton. Backhuys Publishers, Leiden, pp 869–1098Google Scholar
  12. Bray RJ, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr 27:325–349CrossRefGoogle Scholar
  13. Calbet A, Alcaraz M, Atienza DE, Broglio E (2002) Vaqué D (2005) Zooplankton biomass and distribution patterns along the western Antarctic Peninsula. J Plankton Res 27:1195–1203CrossRefGoogle Scholar
  14. Casaux R, Carlini A, Corbalán A et al (2009) The diet of the Weddell seal Leptonychotes weddellii at Laurie Island, South Orkney Islands. Polar Biol 32:833–838CrossRefGoogle Scholar
  15. Chinnery FE, Williams JA (2004) The influence of temperature and salinity on Acartia (Copepoda: Calanoida) nauplii survival. Mar Biol 145:733–738Google Scholar
  16. Clarke A, Harris CM (2003) Polar marine ecosystems: major threats and future change. Environ Conserv 30:1–25CrossRefGoogle Scholar
  17. Clarke A, Leakey RJG (1996) The seasonal cycle of phytoplankton, macronutrients, and the microbial community in a nearshore antarctic marine ecosystem. Limnol Oceanogr 41:1281–1294CrossRefGoogle Scholar
  18. Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation, 2nd edn. Primer-E, PlymouthGoogle Scholar
  19. Coria NR, Montalti D, Rombola EF et al (2011) Birds at Laurie Island, South Orkney islands, Antarctica: breeding species and their distribution. Mar Oornithol 39:207–213Google Scholar
  20. Daponte MC, Capitanio FL, Esnal GB (2001) A mechanism for swarming in the tunicate Salpa thompsoni (Foxton, 1961). Antarct Sci 13:240–245CrossRefGoogle Scholar
  21. Di Rienzo JA, Casanoves F, Balzarini MG et al (2013). InfoStat versión 2013. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar
  22. Doney SC, Ruckelshaus M, Duffy JE et al (2012) Climate change impacts on marine ecosystems. Ann Rev Mar Sci 4:11–37CrossRefPubMedGoogle Scholar
  23. Ducklow HW, Baker K, Martinson DG et al (2007) Marine pelagic ecosystems: the West Antarctic Peninsula. Philos Trans R Soc B 362:67–94CrossRefGoogle Scholar
  24. Dunn MJ, Jennifer A, Jackson JA et al (2016) Population size and decadal trends of three penguin species nesting at Signy Island. South Orkney Islands PLoS One.  https://doi.org/10.1371/journal.pone.0164025 PubMedGoogle Scholar
  25. Dvoretsky VG, Dvoretsky AG (2009) Spatial variations in reproductive characteristics of the small copepod Oithona similis in the Barents Sea. Mar Ecol Prog Ser 386:133–146CrossRefGoogle Scholar
  26. Eisenman I, Meier WN, Norris JR (2014) A spurious jump in the satellite record: has Antarctic sea ice expansion been overestimated? Cryosphere 8:1289–1296CrossRefGoogle Scholar
  27. Elwers K, Dahms HU (1998) Species composition and seasonal population structure of Oithona similis (Copepoda, Cyclopoida) in the Potter Cove (Jubany, King George Island, Antarctica). Berichte zur Polar- und Meeresforschung 299:150–155Google Scholar
  28. Esnal GB (1999) Appendicularia. In: Boltovskoy D (ed) South Atlantic Zooplankton. Backhuys Publishers, Leiden, pp 1375–1399Google Scholar
  29. Feller RJ, Warwick RM (1988) Energetics. In: Higgins RP, Thiel H (eds) Introduction to the study of meiofauna. Smithsonian Institution Press, Washington, pp 181–196Google Scholar
  30. Francis TB, Scheuerell MD, Brodeur RD, Levin PS et al (2012) Climate shifts the interaction web of a marine plankton community. Glob Change Biol 18:2498–2508CrossRefGoogle Scholar
  31. Fransz HG (1988) Vernal abundance, structure and development of epipelagic copepod populations of the eastern Weddell Sea (Antarctica). Polar Biol 9:107–114CrossRefGoogle Scholar
  32. Garcia MD, Hoffmeyer MS, López Abbate MC, Barría de Cao MS et al (2015) Micro and mesozooplankton responses during two contrasting summers in coastal Antarctic environment. Polar Biol 39:123–137CrossRefGoogle Scholar
  33. Gee JM, Fleeger JW (1986) Two new species of harpacticoid copepod from the South Orkney Islands, Antarctica, and a redescription of Idyellopsis typica Lang (Tisbidae). Zool J Linn Soc Lond 88:143–165CrossRefGoogle Scholar
  34. Gleiber M (2014) Long-term change in copepod community structure in the Western Antarctic Peninsula: Linkage to climate and implications for carbon cycling. Dissertation, The Faculty of the School of Marine ScienceGoogle Scholar
  35. Gleiber MR, Steinberg DK, Ducklow HW (2012) Time series of vertical flux of zooplankton fecal pellets on the continental shelf of the western Antarctic Peninsula. Mar Ecol Prog Ser 471:23–36CrossRefGoogle Scholar
  36. Gorsky G, Youngbluth MJ, Deibel D (2005) Response of marine ecosystems to global change: ecological impact of appendicularians. Editions Scientifiques, ParisGoogle Scholar
  37. Gradinger R, Friedrich C, Spindler M (1999) Abundance, biomass and composition of the sea ice biota of the Greenland Sea pack ice. Deep Sea Res Part II 46:1457–1472CrossRefGoogle Scholar
  38. Greve W, Reiners F, Nast J, Hoffmann S (2004) Hoffmann Helgoland Roads meso- and macrozooplankton time-series 1974 to 2004: lessons from 30 years of single spot, high frequency sampling at the only off-shore island of the North Sea. Helgol Mar Res 58:274–288CrossRefGoogle Scholar
  39. Hansen BW, Drillet G, Kozmer A, Madsen KV, Pedersen MF, Sørensen TF (2010) Temperature effects on copepod egg hatching: does acclimatization matter? J Plankton Res 32:305–315CrossRefGoogle Scholar
  40. Hawkings JR, Wadham JL, Tranter M, Raiswell R et al (2014) Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans. Nat Commun.  https://doi.org/10.1038/ncomms4929 PubMedPubMedCentralGoogle Scholar
  41. Hirst A, Bunker A (2003) Growth of marine planktonic copepods: Global rates and patterns in relation to chlorophyll a, temperature, and body weight. Limnol Oceanogr 48:1988–2010CrossRefGoogle Scholar
  42. Jarman SN, McInnes JC, Faux C et al (2013) Adélie penguin population diet monitoring by analysis of food DNA in scats. PLoS ONE.  https://doi.org/10.1371/journal.pone.0082227 Google Scholar
  43. Jaspers C, Nielsen TG, Garstensen J, Hopcroft RR, Møller EF (2009) Metazooplankton distribution across the Southern Indian Ocean with emphasis on the role of Larvaceans. J Plankton Res 31:525–540CrossRefPubMedCentralGoogle Scholar
  44. Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz 167:191–194CrossRefGoogle Scholar
  45. Kiørboe T, Hirst AG (2008) Optimal development time in pelagic copepods. Mar Ecol Prog Ser.  https://doi.org/10.3354/meps07572 Google Scholar
  46. Kiørboe T, Møhlenberg F, Nicolajsen H (1982) Grazing rate and gut clearance in the planktonic copepod Centropages hamatus (Lilljeborg) in relation to food concentration and temperature. Ophelia 21:181–194CrossRefGoogle Scholar
  47. Leakey RJG, Fenton N, Clarke A (1994) The annual cycle of planktonic ciliates in nearshore waters at Signy Island, Antarctica. J Plankton Res 16:841–856CrossRefGoogle Scholar
  48. Lewis Smith RI (1990) Signy Island as a paradigm of biological and environmental change in Antarctic terrestrial ecosystems. In: Kerry KR, Hempel G (eds) Antarctic ecosystems: ecological change and conservation. Springer, Berlin, pp 32–50CrossRefGoogle Scholar
  49. Lindsay MC (2012) Distribution and abundance of Larvaceans in the Southern Ocean. Dissertation, University of TasmaniaGoogle Scholar
  50. Lischka S, Hagen W (2007) Seasonal lipid dynamics of the copepods Pseudocalanus minutus (Calanoida) and Oithona similis (Cyclopoida) in the Arctic Kongsfjorden (Svalbard). Mar Biol 150:443–454CrossRefGoogle Scholar
  51. Lombard F, Renaud F, Sainsbury C, Sciandra A, Gorsky G (2009) Appendicularian ecophysiology. I: food concentration dependent clearance rate, assimilation efficiency, growth and reproduction of Oikopleura dioica. J Mar Syst 78:606–616CrossRefGoogle Scholar
  52. McLeod DJ, Hosie GW, Kitchener JA, Takahashi KT et al (2010) Zooplankton atlas of the Southern Ocean: the SCAR SO-CPR survey (1991-2008). Polar Sci 4:353–385CrossRefGoogle Scholar
  53. Metz C (1996) Lebensstrategien dominanter antarktischer Oithonidae (Cyclopoida, Copepoda) und Oncaeidae (Poecilostomatoida, Copepoda) im Belllngshausenmeer. Dissertation, Ber Polarforsch 207:l–123Google Scholar
  54. Metz C (1998) Feeding of Oncaea curvata (Poecilostomatoida, Copepoda). Mar Ecol Prog Ser 169:229–235CrossRefGoogle Scholar
  55. Montes-Hugo M, Doney SC, Ducklow HW et al (2009) Recent changes in phytoplankton communities associated with rapid regional climate change along the western Antarctic Peninsula. Science 323:1470–1473CrossRefPubMedGoogle Scholar
  56. Murphy EJ, Watkins JL, Trathan PN et al (2007) Spatial and temporal operation of the Scotia Sea ecosystem: a review of large-scale links in a krill centred food web. Philos Trans R Soc B 362:113–148CrossRefGoogle Scholar
  57. Murphy EJ, Clarke A, Abram NJ, Turner J (2014) Variability of sea-ice in the northern Weddell Sea during the 20th century. J Geophys Res Oceans 119:4549–4572CrossRefGoogle Scholar
  58. Nielsen TG, Sabatini M (1996) Role of cyclopoid copepods Oithona spp in North Sea plankton communities. Mar Ecol Prog Ser 139:79–93CrossRefGoogle Scholar
  59. Nishibe Y, Kobari T, Ota T (2010) Feeding by the cyclopoid copepod Oithona similis on the microplankton assemblage in the Oyashio region during spring. Plankton Benthos Res 5:74–78CrossRefGoogle Scholar
  60. Nozais C, Gosselin M, Michel C, Gugliemo T (2001) Abundance, biomass, composition and grazing impact of sea-ice meiofauna in the North Water, northern Baffin Bay. Mar Ecol Prog Ser 217:235–250CrossRefGoogle Scholar
  61. Pane L, Feletti M, Francomacaro B, Mariottini GL (2004) Summer coastal zooplankton biomass and copepod community structure near the Italian Terra Nova Base (Terra Nova Bay, Ross Sea, Antarctica). J Plankton Res 26:1479–1488CrossRefGoogle Scholar
  62. Pasternak AF, Schnack-Schiel SB (2001) Seasonal feeding patterns of the dominant Antarctic copepods Calanus propinquus and Calanoides acutus in the Weddell Sea. Polar Biol 24:771–784CrossRefGoogle Scholar
  63. Pielou EC (1969) An introduction to mathematical ecology. Wiley, New YorkGoogle Scholar
  64. Pond DW, Ward P (2011) Importance of diatoms for Oithona in Antarctic waters. J Plankton Res 33:105–118CrossRefGoogle Scholar
  65. Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948CrossRefGoogle Scholar
  66. Presta ML, Hoffmeyer MS, Capitanio FL (2015) Population structure and maturity stages of Fritillaria borealis (Appendicularia, Tunicata): seasonal cycle in Ushuaia Bay (Beagle Channel). Braz J Oceanogr 63:279–288CrossRefGoogle Scholar
  67. Richardson AJ (2008) In hot water: zooplankton and climate change. ICES J Mar Sci 65:279–295CrossRefGoogle Scholar
  68. Sahade R, Lagger C, Torre LF et al (2015) Climate change and glacier retreat drive shifts in an Antarctic benthic ecosystem. Sci Adv.  https://doi.org/10.1126/sciadv.1500050 PubMedPubMedCentralGoogle Scholar
  69. Sato R, Tanaka Y, Ishimaru T (2001) House production by Oikopleura dioica (Tunicata, Appendicularia) under laboratory conditions. J Plankton Res 23:415–423CrossRefGoogle Scholar
  70. Schnack-Schiel SB, Hagen W, Mizdalski E (1998) Seasonal carbon distribution of copepods in the eastern Weddell Sea, Antarctica. J Mar Syst 17:305–311CrossRefGoogle Scholar
  71. Shannon CE, Weaver W (1949) The mathematical theory of communication. The University of Illinois Press, UrbanaGoogle Scholar
  72. Shreeve RS, Ward P, Whitehouse MJ (2002) Copepod growth and development around South Georgia: relationships with temperature, food and krill. Mar Ecol Prog Ser 233:169–183CrossRefGoogle Scholar
  73. Sicinski J, Rozycki O, Kittel W (1996) Zoobenthos and zooplankton of Herve Cove, King George Island, South Shetland Islands, Antarctic. Pol Polar Res 17:221–238Google Scholar
  74. Simonsen R (1974) The diatom plankton of the Indian Ocean expedition of RV Meteor 1964–1965. Meteor-Forschungsergebnisse, Reihe, BerlinGoogle Scholar
  75. Sommaruga R (2015) When glaciers and ice sheets melt: consequences for planktonic organisms. J Plankton Res 3:509–518CrossRefGoogle Scholar
  76. Stanwell-Smith D, Hood A, Peck LS (1997) A field guide to the pelagic invertebrate larvae of the maritime Antarctic. British Antarctic Survey, CambridgeGoogle Scholar
  77. Steinberg DK, Ruck KE, Gleiber MR, Garzio LM et al (2015) Long-term (1993-2013) changes in macrozooplankton off the Western Antarctic Peninsula. Deep-Sea Res Part I 101:54–70CrossRefGoogle Scholar
  78. Svensen C, Kiørboe T (2000) Remote prey detection in Oithona similis: hydromechanical vs chemical cues. J Plankton Res 22:1155–1166CrossRefGoogle Scholar
  79. Tsujimoto M, Takahashi KT, Hirawake T, Fukuchi M (2007) U–nusual abundance of appendicularians in the seasonal ice zone (140°E) of the Southern Ocean. Polar Biosci 19:133–141Google Scholar
  80. Utermöhl H (1958) Zur Vervollkommnung der quantitativen Phytoplankton Methodik. Mitt Int Ver Theor Angew Limnol 9:1–38Google Scholar
  81. Vanderploeg HA, Scavia D (1979) Two electivity indices for feeding with special reference to zooplankton grazing. Can J Fish Aquat Sci 36:362–365Google Scholar
  82. Verity PG, Smetacek V (1996) Organism life cycles, predation, and the structure of marine pelagic ecosystems. Mar Ecol Prog Ser 130:277–293CrossRefGoogle Scholar
  83. Wallis JR, Swadling KM, Everett JD, Suthers IM et al (2015) Zooplankton abundance and biomass size spectra in the East Antarctic sea-ice zone during the winter–spring transition. Deep Sea Res Part II 131:170–181CrossRefGoogle Scholar
  84. Walton DWH (1982) The Signy Island terrestrial reference sites. XV. Microclimate monitoring, 1972–74. Br Antarct Surv Bull 55:111–126Google Scholar
  85. Ward P, Hirst AG (2007) Oithona similis in a high latitude ecosystem: abundance distribution and temperature limitation of fecundity rates in a sac spawning copepod. Mar Biol 151:1099–1110CrossRefGoogle Scholar
  86. Ward P, Shreeve RS (1998) Egg hatching times of Antarctic copepods. Polar Biol 19:142–144CrossRefGoogle Scholar
  87. Ward P, Shreeve RS, Cripps GG (1996) Rhincalanus gigas and Calanus simillimus: lipid storage patterns of two species of copepod in the seasonally ice-free zone of the Southern Ocean. J Plankton Res 18:1439–1454CrossRefGoogle Scholar
  88. Ward P, Shreeve R, Whitehouse M, Korb B et al (2005) Phyto- and zooplankton community structure and production around South Georgia (Southern Ocean) during summer 2001/02. Deep Sea Res Part I 52:421–441CrossRefGoogle Scholar
  89. Ward P, Atkinson A, Tarling G (2012a) Mesozooplankton community structure and variabilityin the Scotia Sea: a seasonal comparison. Deep Sea Res Part II 60:78–92CrossRefGoogle Scholar
  90. Ward P, Atkinson A, Venables HJ, Tarling GA et al (2012b) Food webstructure and bioregions in the Scotia Sea: a seasonal synthesis. Deep-Sea Res PTII 60:253–266CrossRefGoogle Scholar
  91. Whitaker TM (1982) Primary production of phytoplankton off Signy Island, South Orkneys, the Antarctic. Proc R Soc Lond Ser B 214:169–189CrossRefGoogle Scholar
  92. Wyatt T (1973) The biology of Oikopleura dioica and Fritillaria borealis in the Southern Bight. Mar Biol 22:137–158CrossRefGoogle Scholar
  93. Zmijewska MI, Yen J (2003) Seasonal and diel changes in the abundance and vertical distribution of the Antarctic copepod Calanoides acutus, Calanus propinquus, Rhincalanus gigas, Metridia gerlachei and Euchaeta antarctica (Calanoida) in Croker Passage (Antarctic Peninsula). Oceanologia 35:101–127Google Scholar
  94. Zuur AF, Ieno EN, Walker NJ et al (2009) Dealing with heterogeneity. In: Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (eds) Mixed effects models and extensions in ecology with R. Springer, New York, pp 71–100CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Mariela L. Spinelli
    • 1
    • 2
  • Claudio Franzosi
    • 3
  • Héctor Olguin Salinas
    • 4
    • 5
  • Fabiana L. Capitanio
    • 1
    • 2
  • Viviana A. Alder
    • 3
    • 4
    • 5
  1. 1.CONICET- Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada(IBBEA)Buenos AiresArgentina
  2. 2.Laboratorio de Zoplancton Marino, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y NaturalesBuenos AiresArgentina
  3. 3.Instituto Antártico Argentino, Dirección Nacional del AntarticoSan MartínArgentina
  4. 4.Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos AiresBuenos AiresArgentina
  5. 5.CONICET- Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires, (IEGEBA)Buenos AiresArgentina

Personalised recommendations