Advertisement

Polar Biology

, Volume 41, Issue 3, pp 469–480 | Cite as

Phenotypic and genotypic characterization of a novel multi-antibiotic-resistant, alginate hyperproducing strain of Pseudomonas mandelii isolated in Antarctica

  • Sebastián Higuera-Llantén
  • Felipe Vásquez-Ponce
  • Matías Núñez-Gallegos
  • María Soledad Pavlov
  • Sergio Marshall
  • Jorge Olivares-PachecoEmail author
Original Paper

Abstract

Until recently, it was thought that Antarctica was a sterile continent due to extreme environmental conditions. In fact, this cold continent is one of the most diverse in terms of microorganisms. In the present study, the bacterial isolate Pseudomonas sp. 6A1 was obtained from marine sediments originating from the Fildes Peninsula Bay, King George Island, Antarctica. Subsequently, this isolate was identified as Pseudomonas mandelii. To arrive at this conclusion, molecular studies were performed using the 16S rRNA and multilocus sequence analysis. Both techniques were used to construct phylogenetic trees, revealing 99.99% similarity between the 6A1 strain and P. mandelii. To provide phenotypic support for this finding, BIOLOG GN2 and API20 NE tests, as well as assimilation assays with different carbon sources, were performed. These tests revealed 87% similarity with P. mandelii. This result was primarily due to an inability of the 6A1 strain to reduce nitrates, as well as to variations in the assimilation of different carbon sources. Another important phenotypic difference was alginate hyperproduction by 6A1, a trait never before described in a P. mandelii strain. Finally, the 6A1 strain was found to present multiple antibiotic resistances. Altogether, these results confirm the first case of P. mandelii isolation from the Antarctic.

Keywords

Antarctic Pseudomonas P. mandelii MLSA Alginate hyperproducer Multiresistant bacteria 

Notes

Acknowledgements

We would like to thank Dr. Marcelo González of the Chilean Antarctic Institute (INACH) for providing us with the Pseudomonas sp. 6A1 strain.

Funding

This work was funded by the “Dirección de Investigación,” Pontificia Universidad Católica de Valparaíso (Project DI 037.431/2015) and by INACH (Doctorate Project DT_02-13).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. doi: 10.1016/S0022-2836(05)80360-2 CrossRefPubMedGoogle Scholar
  2. Alvarez-Ortega C, Wiegand I, Olivares J, Hancock RE, Martinez JL (2010) Genetic determinants involved in the susceptibility of Pseudomonas aeruginosa to beta-lactam antibiotics. Antimicrob Agents Chemother 54:4159–4167. doi: 10.1128/AAC.00257-10 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alvarez-Ortega C, Olivares J, Martinez JL (2013) RND multidrug efflux pumps: what are they good for? Front Microbiol 4:7. doi: 10.3389/fmicb.2013.00007 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Andreani NA, Martino ME, Fasolato L et al (2014) Tracking the blue: a MLST approach to characterise the Pseudomonas fluorescens group. Food Microbiol 39:116–126. doi: 10.1016/j.fm.2013.11.012 CrossRefPubMedGoogle Scholar
  5. Antranikian G, Vorgias CE, Bertoldo C (2005) Extreme environments as a resource for microorganisms and novel biocatalysts. Adv Biochem Eng Biotechnol 96:219–262. doi: 10.1007/b135786 PubMedGoogle Scholar
  6. Anzai Y, Kim H, Park JY, Wakabayashi H, Oyaizu H (2000) Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 4:1563–1589. doi: 10.1099/00207713-50-4-1563 CrossRefGoogle Scholar
  7. Asencio G, Lavin P, Alegría K, Dominguez M, Bello H, Gonzalez-Rocha G, Gonzalez-Aravena M (2014) Antibacterial activity of the Antarctic bacterium Janthinobacterium sp: SMN 33.6 against multi-resistant Gram-negative bacteria. Electron J Biotechnol 17:1. doi: 10.1016/j.ejbt.2013.12.001 CrossRefGoogle Scholar
  8. Baquero F, Alvarez-Ortega C, Martinez JL (2009) Ecology and evolution of antibiotic resistance. Env Microbiol Reports 1:469–476. doi: 10.1111/j.1758-2229.2009.00053.x CrossRefGoogle Scholar
  9. Barrett JE, Virginia RA, Wall DH, Parsons AN, Powers LE, Burkins MB (2004) Variation in biogeochemistry and soil biodiversity across spatial scales in a polar desert ecosystem. Ecology 85:3105–3118. doi: 10.1890/03-0213 CrossRefGoogle Scholar
  10. Bozal N, Montes MJ, Mercadé E (2007) Pseudomonas guineae sp. nov., a novel psychrotolerant bacterium from an Antarctic environment. Int J Syst Evol Microbiol 57:2609–2612. doi: 10.1099/ijs.0.65141-0 CrossRefPubMedGoogle Scholar
  11. Cabeen MT (2014) Stationary phase-specific virulence factor overproduction by a lasR mutant of Pseudomonas aeruginosa. PLoS ONE 9:e88743. doi: 10.1371/journal.pone.0088743 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Carrión O, Miñana-Galbis D, Montes MJ, Mercadé E (2011) Pseudomonas deceptionensis sp. nov., a psychrotolerant bacterium from the Antarctic. Int J Syst Evol Microbiol 61:2401–2405. doi: 10.1099/ijs.0.024919-0 CrossRefPubMedGoogle Scholar
  13. Cary SC, McDonald IR, Barrett JE, Cowan DA (2010) On the rocks: the microbiology of Antarctic dry valley soils. Nat Rev Microbiol 8:129–138. doi: 10.1038/nrmicro2281 CrossRefPubMedGoogle Scholar
  14. Chauhan A, Bharti PK, Goyal P, Varma A, Jindal T (2015) Psychrophilic pseudomonas in antarctic freshwater lake at stornes peninsula, larsemann hills over east Antarctica. Springerplus 4:582. doi: 10.1186/s40064-015-1354-3 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chen WP, Chen JY, Chang SC, Su CL (1985) Bacterial alginate produced by a mutant of Azotobacter vinelandii. Appl Environ Microbiol 49:543–546PubMedPubMedCentralGoogle Scholar
  16. Chen CX, Zhang XY, Liu C et al (2013) Pseudorhodobacter antarcticus sp. nov., isolated from Antarctic intertidal sandy sediment, and emended description of the genus Pseudorhodobacter Uchino et al. 2002 emend. Jung et al. 2012. Int J Syst Evol Microbiol 63:849–854. doi: 10.1099/ijs.0.042184-0 CrossRefPubMedGoogle Scholar
  17. Cowan DA, Tow LA (2004) Endangered Antarctic environments. Annu Rev Microbiol 58:649–690. doi: 10.1146/annurev.micro.57.030502.090811 CrossRefPubMedGoogle Scholar
  18. Cowan DA, Chown SL, Convey P, Tuffin M, Hughes K, Pointing S, Vincent WF (2011) Non-indigenous microorganisms in the Antarctic: assessing the risks. Trends Microbiol 19:540–548. doi: 10.1016/j.tim.2011.07.008 CrossRefPubMedGoogle Scholar
  19. Dandie CE, Burton DL, Zebarth BJ, Trevors JT, Goyer C (2007) Analysis of denitrification genes and comparison of nosZ, cnorB and 16S rDNA from culturable denitrifying bacteria in potato cropping systems. Syst Appl Microbiol 30:128–138. doi: 10.1016/j.syapm.2006.05.002 CrossRefPubMedGoogle Scholar
  20. De Souza MJ, Nair S, Loka Bharathi PA, Chandramohan D (2006) Metal and antibiotic-resistance in psychrotrophic bacteria frogyom Antarctic marine waters. Ecotoxicol 15:379–384. doi: 10.1007/s10646-006-0068-2 CrossRefGoogle Scholar
  21. Deegenaars ML, Watson K (1998) Heat shock response in psychrophilic and psychrotrophic yeast from Antarctica. Extremophiles 2:41–50. doi: 10.1007/s007920050041 CrossRefPubMedGoogle Scholar
  22. Fajardo A, Linares JF, Martinez JL (2009) Towards an ecological approach to antibiotics and antibiotic resistance genes. Clin Microbiol Infect 15:14–16. doi: 10.1111/j.1469-0691.2008.02688.x CrossRefPubMedGoogle Scholar
  23. Fenice M (2016) The Psychrotolerant Antarctic Fungus Lecanicillium muscarium CCFEE 5003: a powerful producer of cold-tolerant chitinolytic enzymes. Molecules 21:447. doi: 10.3390/molecules21040447 CrossRefPubMedGoogle Scholar
  24. Formusa PA, Hsiang T, Habash MB, Lee H, Trevors JT (2014) Genome sequence of Pseudomonas mandelii PD30. Genome Announc 28:e00713–e00714. doi: 10.1128/genomeA.00713-14 Google Scholar
  25. Gabani P, Prakash D, Singh OV (2012) Emergence of antibiotic-resistant extremophiles (AREs). Extremophiles 16:697–713. doi: 10.1007/s00792-012-0475-7 CrossRefPubMedGoogle Scholar
  26. Garrido-Sanz D, Meier-Kolthoff JP, Göker M, Martin M, Rivilla M, Redondo-Nieto M (2016) Genomic and genetic diversity within the Pseudomonas fluorescens complex. PLoS ONE 11:e0150183. doi: 10.1371/journal.pone.0150183 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Ghequire MGK, De Mot R (2014) Ribosomally encoded antibacterial proteins and peptides from Pseudomonas. FEMS Microbiol Rev 38:523–568. doi: 10.1111/1574-6976.12079 CrossRefPubMedGoogle Scholar
  28. Hay ID, Wang Y, Moradali MF, Rehman ZU, Rehm BH (2014) Genetics and regulation of bacterial alginate production. Environ Microbiol 16:2997–3011. doi: 10.1111/1462-2920.12389 CrossRefPubMedGoogle Scholar
  29. Helmke E, Weyland H (2004) Psychrophilic versus psychrotolerant bacteria-occurrence and significance in polar and temperate marine habitats. Cell Mol Biol 50:553–561. doi: 10.1170/T545 PubMedGoogle Scholar
  30. Hong S, Lee C, Jang S-H (2012) Purification and properties of an extracellular esterase from a cold-adapted Pseudomonas mandelii. Biotechnol Lett 34:1051–1055. doi: 10.1007/s10529-012-0866-y CrossRefPubMedGoogle Scholar
  31. Knutson CA, Jeanes A (1968) A new modification of the carbazole analysis: application to heteropolysaccharides. Anal Biochem 24:470–481. doi: 10.1016/0003-2697(68)90154-1 CrossRefPubMedGoogle Scholar
  32. Kondakova AN, Drutskaya MS, Shashkov AS et al (2013) Structure of the O-polysaccharide of Pseudomonas mandelii CYar1 containing 3,6-dideoxy-4-C-[(S)-1-hydroxyethyl]-D-xylo-hexose (yersiniose A). Carbohydr Res 381:138–141. doi: 10.1016/j.carres.2013.08.016 CrossRefPubMedGoogle Scholar
  33. Kosina M, Barták M, Mašlaňová I, Pascutti AV, Sedo O, Lexa M, Sedlacek I (2013) Pseudomonas prosekii sp. nov., a novel psychrotrophic bacterium from Antarctica. Curr Microbiol 67:637–646. doi: 10.1007/s00284-013-0406-6 CrossRefPubMedGoogle Scholar
  34. Kosina M, Švec P, Černohlávková J, Bartak M, Snopkova K, Vos P, Sedlacek I (2016) Description of Pseudomonas gregormendelii sp. nov., a novel psychrotrophic bacterium from James Ross island. Antarctica. Curr Microbiol 73:84–90. doi: 10.1007/s00284-016-1029-5 CrossRefPubMedGoogle Scholar
  35. Kriss AE, Mitskevich IN, Rozanova EP, Osnitskaia LK (1976) Microbiological studies of the Wanda Lake (Antarctica). Mikrobiologiia 45:1075–1081PubMedGoogle Scholar
  36. Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol. doi: 10.1093/molbev/msw054 Google Scholar
  37. Lee YM, Yang JY, Baek K et al (2016) Pseudorhodobacter psychrotolerans sp. nov., a psychrotolerant bacterium isolated from terrestrial soil, and emended description of the genus Pseudorhodobacter. Int J Syst Evol Microbiol 66:1068–1073. doi: 10.1099/ijsem.0.000841 CrossRefPubMedGoogle Scholar
  38. Li A, Gai Z, Cui D et al (2012) Genome sequence of a highly efficient aerobic denitrifying bacterium, Pseudomonas stutzeri T13. J Bacteriol 194:5720. doi: 10.1128/JB.01376-12 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Li R, Jiang Y, Wang X et al (2013) Psychrotrophic Pseudomonas mandelii CBS-1 produces high levels of poly-β-hydroxybutyrate. Springerplus 2:335. doi: 10.1186/2193-1801-2-335 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Linares JF, Lopez JA, Camafeita E, Albar JP, Rojo F, Martinez JL (2005) Overexpression of the multidrug efflux pumps MexCD-OprJ and MexEF-OprN is associated with a reduction of type III secretion in Pseudomonas aeruginosa. J Bacteriol 187:1384–1391. doi: 10.1128/JB.187.4.1384-1391.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  41. López N, Pettinari MJ, Stackebrandt E, Tribelli PM, Põtter M, Steinbüchel A, Méndez BS (2009) Pseudomonas extremaustralis sp. nov., a Poly(3-hydroxybutyrate) producer isolated from an Antarctic environment. Curr Microbiol 59:514–519. doi: 10.1007/s00284-009-9469-9 CrossRefPubMedGoogle Scholar
  42. Marold LM, Freedman R, Chamberlain RE, Miyashiro JJ (1981) New selective agent for isolation of Pseudomonas aeruginosa. Appl Environ Microbiol 41:977–980PubMedPubMedCentralGoogle Scholar
  43. Martinez JL (2008) Antibiotics and antibiotic resistance genes in natural environments. Science 321:365–367. doi: 10.1126/science.1159483 CrossRefPubMedGoogle Scholar
  44. Martinez JL (2009) The role of natural environments in the evolution of resistance traits in pathogenic bacteria. Proc Biol Sci 276:2521–2530. doi: 10.1098/rspb.2009.0320 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Martinez JL, Olivares J (2012) Environmental pollution by antibiotic resistance genes. In: Keen P, Montforts M (eds) Antimicrobial resistance in the environment. Willey-Blackwell, New Jersey, pp 151–172Google Scholar
  46. Martinez JL, Sanchez MB, Martinez-Solano L, Hernandez A, Garmendia L, Fajardo A, Alvarez-Ortega C (2009) Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems. FEMS Microbiol Rev 33:430–449. doi: 10.1111/j.1574-6976.2008.00157.x CrossRefPubMedGoogle Scholar
  47. Miller RV, Gammon K, Day MJ (2009) Antibiotic resistance among bacteria isolated from seawater and penguin fecal samples collected near Palmer Station, Antarctica. Can J Microbiol 55:37–45. doi: 10.1139/W08-119 CrossRefPubMedGoogle Scholar
  48. Niederberger TD, McDonald IR, Hacker AL, Soo RM, Barrett JE, Wall DH, Cary S (2008) Microbial community composition in soils of Northern Victoria land, Antarctica. Environ Microbiol 10:1713–1724. doi: 10.1111/j.1462-2920.2008.01593.x CrossRefPubMedGoogle Scholar
  49. Niederberger TD, Sohm JA, Gunderson TE et al (2015) Microbial community composition of transiently wetted Antarctic dry valley soils. Front Microbiol 6:9. doi: 10.3389/fmicb.2015.00009 PubMedPubMedCentralGoogle Scholar
  50. O’Toole GA, Kolter R (1998) Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28:449–461. doi: 10.1046/j.1365-2958.1998.00797.x CrossRefPubMedGoogle Scholar
  51. Olivares J, Alvarez-Ortega C, Linares JF, Rojo F, Köhler T, Martinez JL (2012) Overproduction of the multidrug efflux pump MexEF-OprN does not impair Pseudomonas aeruginosa fitness in competition tests, but produces specific changes in bacterial regulatory networks. Env Microbiol 14:1968–1981. doi: 10.1111/j.1462-2920.2012.02727.x CrossRefGoogle Scholar
  52. Palleroni NJ (2010) The Pseudomonas story. Environ Microbiol 12:1377–1383. doi: 10.1111/j.1462-2920.2009.02041.x CrossRefPubMedGoogle Scholar
  53. Pereira JQ, Lopes FC, Petry MV, da Costa Medina LF, Brandelli A (2014) Isolation of three novel Antarctic psychrotolerant feather-degrading bacteria and partial purification of keratinolytic enzyme from Lysobacter sp. A03. Int Biodeterior Biodegrad 88:1–7. doi: 10.1016/j.ibiod.2013.11.012 CrossRefGoogle Scholar
  54. Rahman MH, Sakamoto KQ, Kitamura SI, Nonaka L, Suzuki S (2015) Diversity of tetracycline-resistant bacteria and resistance gene tet(M) in fecal microbial community of Adélie penguin in Antarctica. Polar Biol 38:1775–1781. doi: 10.1007/s00300-015-1732-x CrossRefGoogle Scholar
  55. Reddy GSN, Matsumoto GI, Schumann P, Stackebrandt E, Shivaji S (2004) Psychrophilic pseudomonads from Antarctica: Pseudomonas antarctica sp. nov., Pseudomonas meridiana sp. nov. and Pseudomonas proteolytica sp. nov. Int J Syst Evol Microbiol 54:713–719. doi: 10.1099/ijs.0.02827-0 CrossRefPubMedGoogle Scholar
  56. Segawa T, Takeuchi N, Rivera A et al (2013) Distribution of antibiotic resistance genes in glacier environments. Environ Microbiol Rep 5:127–134. doi: 10.1111/1758-2229.12011 CrossRefPubMedGoogle Scholar
  57. Sjöling S, Cowan DA (2000) Detecting human bacterial contamination in Antarctic soils. Polar Biol 23:644–650. doi: 10.1007/s003000000137 CrossRefGoogle Scholar
  58. Tam HK, Wong CMVL, Yong ST, Blamey J, Gonzalez M (2015) Multiple-antibiotic-resistant bacteria from the maritime Antarctic. Polar Biol 38:1129–1141. doi: 10.1007/s00300-015-1671-6 CrossRefGoogle Scholar
  59. Timmery S, Hu X, Mahillon J (2011) Characterization of Bacilli isolated from the confined environments of the Antarctic Concordia station and the International Space Station. Astrobiology 11:323–334. doi: 10.1089/ast.2010.0573 CrossRefPubMedGoogle Scholar
  60. Vasileva-Tonkova E, Romanovskaya V, Gladka G et al (2014) Ecophysiological properties of cultivable heterotrophic bacteria and yeasts dominating in phytocenoses of Galindez Island, maritime Antarctica. World J Microbiol Biotechnol 30:1387–1398. doi: 10.1007/s11274-013-1555-2 CrossRefPubMedGoogle Scholar
  61. Verhille S, Baida N, Dabboussi F, Izard D, Leclerc H (1999) Taxonomic study of bacteria isolated from natural mineral waters: proposal of Pseudomonas jessenii sp. nov. and Pseudomonas mandelii sp. nov. Syst Appl Microbiol 22:45–58. doi: 10.1016/S0723-2020(99)80027-7 CrossRefPubMedGoogle Scholar
  62. Wang NF, Zhang T, Zhang F et al (2015) Diversity and structure of soil bacterial communities in the Fildes Region (maritime Antarctica) as revealed by 454 pyrosequencing. Front Microbiol 6:1188. doi: 10.3389/fmicb.2015.01188 PubMedPubMedCentralGoogle Scholar
  63. Wiegand I, Hilpert K, Hancock REW (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3:163–175. doi: 10.1038/nprot.2007.521 CrossRefPubMedGoogle Scholar
  64. Winsor GL, Lam DKW, Fleming L et al (2011) Pseudomonas genome database: improved comparative analysis and population genomics capability for Pseudomonas genomes. Nucleic Acids Res 39:D596–D600. doi: 10.1093/nar/gkq869 CrossRefPubMedGoogle Scholar
  65. Wong B-T, Lee D-J (2014) Pseudomonas yangmingensis sp. nov., an alkaliphilic denitrifying species isolated from a hot spring. J Biosci Bioeng 117:71–74. doi: 10.1016/j.jbiosc.2013.06.006 CrossRefPubMedGoogle Scholar
  66. Wright GD (2007) The antibiotic resistome: the nexus of chemical and genetic diversity. Nat Rev Microbiol 5:175–186. doi: 10.1038/nrmicro1614 CrossRefPubMedGoogle Scholar
  67. Yu Y, Li H-R, Zeng Y-X, Chen B (2011) Bacterial diversity and bioprospecting for cold-active hydrolytic enzymes from culturable bacteria associated with sediment from Nella Fjord, eastern Antarctica. Mar Drugs 9:184–195. doi: 10.3390/md9020184 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Sebastián Higuera-Llantén
    • 1
  • Felipe Vásquez-Ponce
    • 1
  • Matías Núñez-Gallegos
    • 1
  • María Soledad Pavlov
    • 1
  • Sergio Marshall
    • 1
    • 2
  • Jorge Olivares-Pacheco
    • 1
    Email author
  1. 1.Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Facultad de CienciasPontificia Universidad Católica de ValparaísoValparaísoChile
  2. 2.Fraunhofer Chile Research, Foundation on System BiotechnologySantiagoChile

Personalised recommendations