Advertisement

Polar Biology

, Volume 41, Issue 8, pp 1547–1554 | Cite as

Responses of orb-weaving spider aggregations to spatiotemporal variation in lake-to-land subsidies at Lake Mývatn, Iceland

  • Jose A. Sanchez-Ruiz
  • Joseph S. PhillipsEmail author
  • Anthony R. Ives
  • Claudio Gratton
Original Paper

Abstract

Tundra ecosystems are often unproductive, and peaks in resource availability are highly variable in space and time. Therefore, the success of organisms inhabiting these biomes likely depends on their ability to efficiently exploit heterogeneously distributed resources. We assessed how orb-weaving spider (Larinioides patagiatus) aggregations near Lake Mývatn, Iceland, respond to large midge (Diptera: Chironomidae) emergences that subsidize ecological communities in the surrounding landscape. The emergences occur for only a few weeks each summer, and the subsidy declines with distance from the lakeshore, producing large spatiotemporal variation in prey availability that might drive orb-weaver foraging behavior. We conducted three surveys during different phases of the summer emergence along a distance gradient to quantify variation in spider aggregation, web size, and habitat use in response to prey abundance. We found that aggregation size increased with the abundance of aerial prey, with the highest orb-weaver densities occurring at peak midge emergence. In contrast, changes in web size did not vary with midge abundance, but rather were determined by physical habitat structure. Our results illustrate how orb-weaver aggregations and web building can respond to spatiotemporal variation in resource subsidies across ecosystem boundaries.

Keywords

Allochthonous subsidies Aquatic insect emergence Habitat complexity Spider aggregations Subsidies Web size 

Notes

Acknowledgements

We would like to thank B. Blundell, C. Daws, S. Grover, and C. Miller for assistance with data collection, Jamie Botsch for assistance creating maps, and Árni Einarsson for comments on the manuscript and logistical research support. We would also like to thank two anonymous reviewers, whose feedback greatly improved the manuscript. This work was supported by NSF LTREB DEB-1556208 to ARI and NSF Graduate Research Fellowship to JSP (DGE-1256259).

References

  1. Baxter CV, Fausch KD, Carl Saunders W (2005) Tangled webs: reciprocal flows of invertebrate prey link streams and riparian zones: prey subsidies link stream and riparian food webs. Freshw Biol 50:201–220. doi: 10.1111/j.1365-2427.2004.01328.x CrossRefGoogle Scholar
  2. Björnsson H, Jónsson T (2004) Climate and climatic variability at Lake Myvatn. Aquat Ecol 38:129–144. doi: 10.1023/B:AECO.0000032061.51508.e6 CrossRefGoogle Scholar
  3. Bultman H, Hoekman D, Dreyer J, Gratton C (2014) Terrestrial deposition of aquatic insects increases plant quality for insect herbivores and herbivore density: terrestrial effects of midge deposition. Ecol Entomol 39:419–426. doi: 10.1111/een.12118 CrossRefGoogle Scholar
  4. Carpenter SR, Cole JJ, Pace ML et al (2005) Ecosystem subsidies: terrestrial support of aquatic food webs from 13C addition to contrasting lakes. Ecology 86:2737–2750. doi: 10.1890/04-1282 CrossRefGoogle Scholar
  5. Chan EKW, Zhang Y, Dudgeon D (2009) Substrate availability may be more important than aquatic insect abundance in the distribution of Riparian orb-web spiders in the tropics. Biotropica 41:196–201. doi: 10.1111/j.1744-7429.2008.00463.x CrossRefGoogle Scholar
  6. Croll DA, Maron JL, Estes JA et al (2005) Introduced predators transform subarctic islands from grassland to tundra. Science 307:1959–1961. doi: 10.1126/science.1108485 CrossRefPubMedGoogle Scholar
  7. Dreyer J, Hoekman D, Gratton C (2012) Lake-derived midges increase abundance of shoreline terrestrial arthropods via multiple trophic pathways. Oikos 121:252–258. doi: 10.1111/j.1600-0706.2011.19588.x CrossRefGoogle Scholar
  8. Dreyer J, Townsend PA, James CH III et al (2015) Quantifying aquatic insect deposition from lake to land. Ecology 96:499–509. doi: 10.1890/14-0704.1 CrossRefPubMedGoogle Scholar
  9. Einarsson Á, Gardarsson A, Gíslason GM, Ives AR (2002) Consumer–resource interactions and cyclic population dynamics of Tanytarsus gracilentus (Diptera: Chironomidae). J Anim Ecol 71:832–845. doi: 10.1046/j.1365-2656.2002.00648.x CrossRefGoogle Scholar
  10. Einarsson Á, Stefánsdóttir G, Jóhannesson H et al (2004) The ecology of Lake Myvatn and the River Laxá: variation in space and time. Aquat Ecol 38:317–348. doi: 10.1023/B:AECO.0000032090.72702.a9 CrossRefGoogle Scholar
  11. Gillespie RG (1987) The role of prey availability in aggregative behaviour of the orb weaving spider Tetragnatha elongata. Anim Behav 35:675–681. doi: 10.1016/S0003-3472(87)80103-3 CrossRefGoogle Scholar
  12. Gratton C, Donaldson J, Zanden MJV (2008) Ecosystem linkages between lakes and the surrounding terrestrial landscape in Northeast Iceland. Ecosystems 11:764–774. doi: 10.1007/s10021-008-9158-8 CrossRefGoogle Scholar
  13. Halaj J, Ross DW, Moldenke AR (1998) Habitat structure and prey availability as predictors of the abundance and community organization of spiders in western Oregon forest canopies. J Arachnol 26:203–220Google Scholar
  14. Herberstein ME, Tso I-Min (2000) Evaluation of formulae to estimate the capture area and mesh height of orb webs (Araneoidea, Araneae). J Arachnol 28:180–184CrossRefGoogle Scholar
  15. Hoechstetter S, Walz U, Dang L, Thinh N (2008) Effects of topography and surface roughness in analyses of landscape structure—a proposal to modify the existing set of landscape metrics. Landsc Online 3:1–14. doi: 10.3097/LO.200803 CrossRefGoogle Scholar
  16. Hoekman D, Dreyer J, Jackson RD et al (2011) Lake to land subsidies: experimental addition of aquatic insects increases terrestrial arthropod densities. Ecology 92:2063–2072. doi: 10.1890/11-0160.1 CrossRefPubMedGoogle Scholar
  17. Hoekman D, Bartrons M, Gratton C (2012) Ecosystem linkages revealed by experimental lake-derived isotope signal in heathland food webs. Oecologia 170:735–743. doi: 10.1007/s00442-012-2329-5 CrossRefPubMedGoogle Scholar
  18. Ives AR, Einarsson Á, Jansen VAA, Gardarsson A (2008) High-amplitude fluctuations and alternative dynamical states of midges in Lake Myvatn. Nature 452:84–87. doi: 10.1038/nature06610 CrossRefPubMedGoogle Scholar
  19. Kasumovic MM, Jordan LA (2013) Social factors driving settlement and relocation decisions in a solitary and aggregative spider. Am Nat 182:532–541. doi: 10.1086/671930 CrossRefPubMedGoogle Scholar
  20. Kralj-Fišer S, Schneider JM (2012) Individual behavioural consistency and plasticity in an urban spider. Anim Behav 84:197–204. doi: 10.1016/j.anbehav.2012.04.032 CrossRefGoogle Scholar
  21. Levi HW (1974) The orb-weaver genera Araniella and Nuctenea (Araneae: Araneidae). Bull Mus Comp Zool 146:291–316Google Scholar
  22. Marczak LB, Richardson JS (2008) Growth and development rates in a riparian spider are altered by asynchrony between the timing and amount of a resource subsidy. Oecologia 156:249–258. doi: 10.1007/s00442-008-0989-y CrossRefPubMedGoogle Scholar
  23. McCormick MI (1994) Comparison of field methods for measuring surface topography and their associations with a tropical reef fish assemblage. Mar Ecol Prog Ser Oldendorf 112:87–96CrossRefGoogle Scholar
  24. Nakano S, Murakami M (2001) Reciprocal subsidies: dynamic interdependence between terrestrial and aquatic food webs. Proc Natl Acad Sci 98:166–170. doi: 10.1073/pnas.98.1.166 CrossRefPubMedGoogle Scholar
  25. Nentwig W, Blick T, Gloor D, Hänggi A, Kropf C (2017) Larinioides patagiatus (Clerck, 1757). Spiders of Europe. https://araneae.unibe.ch/data/964. Accessed 31 July 2017
  26. Orr M, Zimmer M, Jelinski DE, Mews M (2005) Wrack deposition on different beach types: spatial and temporal variation in the pattern of subsidy. Ecology 86:1496–1507. doi: 10.1890/04-1486 CrossRefGoogle Scholar
  27. Polis GA, Hurd SD (1995) Extraordinarily high spider densities on islands: flow of energy from the marine to terrestrial food webs and the absence of predation. Proc Natl Acad Sci 92:4382–4386CrossRefPubMedGoogle Scholar
  28. Polis GA, Anderson WB, Holt RD (1997) Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annu Rev Ecol Syst 28:289–316CrossRefGoogle Scholar
  29. QGIS Development Team (2014) QGIS geographic information system. Open Source Geospatial Foundation. http://qgis.osgeo.org
  30. R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
  31. Riechert SE, Tracy CR (1975) Thermal balance and prey availability: bases for a model relating web-site characteristics to spider reproductive success. Ecology 56:265–284CrossRefGoogle Scholar
  32. Rypstra AL (1983) The importance of food and space in limiting web-spider densities; a test using field enclosures. Oecologia 59:312–316. doi: 10.1007/BF00378855 CrossRefPubMedGoogle Scholar
  33. Rypstra AL (1985) Aggregations of Nephila clavipes (L.)(Araneae, Araneidae) in relation to prey availability. J Arachnol 13:71–78Google Scholar
  34. Sabo JL, Power ME (2002) Numerical response of lizards to aquatic insects and short-term consequences for terrestrial prey. Ecology 83:3023–3036CrossRefGoogle Scholar
  35. Sandoval CP (1994) Plasticity in Web Design in the Spider Parawixia bistriata: a response to variable prey type. Funct Ecol 8:701. doi: 10.2307/2390229 CrossRefGoogle Scholar
  36. Šestáková A, Marusik YM, Omelko MM (2014) A revision of the Holarctic genus Larinioides Caporiacco, 1934 (Araneae: Araneidae). Zootaxa 3894:61–82. doi: 10.11646/zootaxa.3894.1.6 CrossRefPubMedGoogle Scholar
  37. Werner EE, Gilliam JF (1984) The ontogenetic niche and species interactions in size-structured populations. Annu Rev Ecol Evol Syst 15:393–425CrossRefGoogle Scholar
  38. Wise DH (2006) Cannibalism, food limitation, intraspecific competition, and the regulation of spider populations. Annu Rev Entomol 51:441–465. doi: 10.1146/annurev.ento.51.110104.150947 CrossRefPubMedGoogle Scholar
  39. Yang LH, Edwards KF, Byrnes JE et al (2010) A meta-analysis of resource pulse–consumer interactions. Ecol Monogr 80:125–151. doi: 10.1890/08-1996.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Jose A. Sanchez-Ruiz
    • 1
  • Joseph S. Phillips
    • 2
    Email author
  • Anthony R. Ives
    • 2
  • Claudio Gratton
    • 3
  1. 1.Department of BiologyGeorgia Southern UniversityStatesboroUSA
  2. 2.Department of Integrative BiologyUniversity of Wisconsin-MadisonMadisonUSA
  3. 3.Department of EntomologyUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations