Evidence of plant and animal communities at exposed and subglacial (cave) geothermal sites in Antarctica

Abstract

Geothermal areas, such as volcanoes, might have acted as glacial microrefugia for a wide range of species. The heavily glaciated but volcanically active Antarctic continent presents an ideal system for assessing this hypothesis. Ice-free terrain around volcanoes in Antarctica is, however, often restricted to small patches, whereas subglacial cave systems, formed by vented volcanic steam, can be extensive and interconnected. No observations of macrobiota have yet been made for subglacial geothermal environments in Antarctica, but these organisms are often patchily distributed and can be difficult to find. We carried out metabarcoding (eDNA) analyses of soil samples taken from exposed areas on three volcanoes in Victoria Land, and subglacial caves on Mount Erebus. We found evidence of numerous eukaryotic groups, including mosses, algae, arthropods, oligochaetes and nematodes, at both exposed and subglacial sites. Our findings support the notion that geothermal areas—including subglacial environments—can nurture biodiversity in glaciated regions.

This is a preview of subscription content, log in to check access.

Fig. 1

Photograph credits: Hubert Staudigel, Rebecca Williams

References

  1. Anderson JB, Shipp SS, Lowe AL, Wellner JS, Mosola AB (2002) The Antarctic ice sheet during the Last Glacial Maximum and its subsequent retreat history: a review. Quaternary Sci Rev 21:49–70. doi:10.1016/S0277-3791(01)00083-X

    Article  Google Scholar 

  2. Chown SL, Clarke A, Fraser CI, Cary SC, Moon KL, McGeoch MA (2015) The changing form of Antarctic biodiversity. Nature 522:431–438. doi:10.1038/nature14505

    CAS  Article  PubMed  Google Scholar 

  3. Christner BC, Priscu JC, Achberger AM, Barbante C, Carter SP, Christianson K, Michaud AB, Mikucki JA, Mitchell AC, Skidmore ML, Vick-Majors TJ, the WST (2014) A microbial ecosystem beneath the West Antarctic ice sheet. Nature 512:310–313. doi:10.1038/nature13667

    CAS  Article  PubMed  Google Scholar 

  4. Connell L, Staudigel H (2013) Fungal diversity in a dark oligotrophic volcanic ecosystem (DOVE) on Mount Erebus, Antarctica. Biology 2:798–809. doi:10.3390/biology2020798

    Article  PubMed  PubMed Central  Google Scholar 

  5. Convey P, Lewis Smith RI (2006) Geothermal bryophyte habitats in the South Sandwich Islands, maritime Antarctic. J Veg Sci 17:529–538. doi:10.1111/j.1654-1103.2006.tb02474.x

    Article  Google Scholar 

  6. Convey P, Stevens MI (2007) Antarctic biodiversity. Science 317:1877–1878. doi:10.1126/science.1147261

    CAS  Article  PubMed  Google Scholar 

  7. Convey P, Gibson JAE, Hillenbrand CD, Hodgson DA, Pugh PJA, Smellie JL, Stevens MI (2008) Antarctic terrestrial life—challenging the history of the frozen continent? Biol Rev 83:103–117. doi:10.1111/j.1469-185X.2008.00034.x

    Article  PubMed  Google Scholar 

  8. Fell JW, Scorzetti G, Connell L, Craig S (2006) Biodiversity of micro-eukaryotes in Antarctic Dry Valley soils with <5% soil moisture. Soil Biol Biochem 38:3107–3119. doi:10.1016/j.soilbio.2006.01.014

    CAS  Article  Google Scholar 

  9. Fraser CI, Nikula R, Ruzzante DE, Waters JM (2012) Poleward bound: biological impacts of Southern Hemisphere glaciation. Trends Ecol Evol 27:462–471. doi:10.1016/j.tree.2012.04.011

    Article  PubMed  Google Scholar 

  10. Fraser CI, Terauds A, Smellie J, Convey P, Chown SL (2014) Geothermal activity helps life survive glacial cycles. Proc Natl Acad Sci USA 111:5634–5639. doi:10.1073/pnas.1321437111

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Giggenbach WF (1976) Geothermal ice caves on Mt Erebus, Ross Island, Antarctica. New Zeal J Geol Geop 19:365–372. doi:10.1080/00288306.1976.10423566

    Article  Google Scholar 

  12. Herbold CW, McDonald IR, Cary SC (2014) Microbial ecology of geothermal habitats in Antarctica. In: Cowan DA (ed) Antarctic terrestrial microbiology. Springer, Berlin, pp 181–215

    Google Scholar 

  13. Kornobis E, Pálsson S, Kristjánsson BK, Svavarsson J (2010) Molecular evidence of the survival of subterranean amphipods (Arthropoda) during Ice Age underneath glaciers in Iceland. Mol Ecol 19:2516–2530. doi:10.1111/j.1365-294X.2010.04663.x

    PubMed  Google Scholar 

  14. Lawley B, Ripley S, Bridge P, Convey P (2004) Molecular analysis of geographic patterns of eukaryotic diversity in Antarctic soils. Appl Environ Microbiol 70:5963–5972. doi:10.1128/AEM.70.10.5963-5972.2004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Lough AC, Wiens DA, Grace Barcheck C, Anandakrishnan S, Aster RC, Blankenship DD, Huerta AD, Nyblade A, Young DA, Wilson TJ (2013) Seismic detection of an active subglacial magmatic complex in Marie Byrd Land, Antarctica. Nat Geosci 6:1031–1035. doi:10.1038/ngeo1992

    CAS  Article  Google Scholar 

  16. Lyon GL, Giggenbach WF (1974) Geothermal activity in Victoria Land, Antarctica. New Zeal J Geol Geophy 17:511–521. doi:10.1080/00288306.1973.10421578

    Article  Google Scholar 

  17. Rogers S, Shtarkman Y, Koçer Z, Edgar R, Veerapaneni R, Elia T (2013) Ecology of subglacial Lake Vostok (Antarctica), based on metagenomic/metatranscriptomic analyses of accretion ice. Biology 2:629. doi:10.3390/biology2020629

    Article  PubMed  PubMed Central  Google Scholar 

  18. Shtarkman YM, Koçer ZA, Edgar R, Veerapaneni RS, D’Elia T, Morris PF, Rogers SO (2013) Subglacial Lake Vostok (Antarctica) accretion ice contains a diverse set of sequences from aquatic, marine and sediment-inhabiting Bacteria and Eukarya. PLoS ONE 8:e67221. doi:10.1371/journal.pone.0067221

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Skotnicki ML, Selkirk PM, Broady P, Adam KD, Ninham JA (2001) Dispersal of the moss Campylopus pyriformis on geothermal ground near the summits of Mount Erebus and Mount Melbourne, Victoria Land, Antarctica. Antarct Sci 13:280–285. doi:10.1017/S0954102001000396

    Article  Google Scholar 

  20. Stewart SF, Pinkerton H, Blackburn GA, Gudmundsson MT (2008) Monitoring active subglacial volcanoes: a case study using airborne remotely sensed imagery of Grímsvötn, Iceland. Int J Remote Sens 29:6501–6514. doi:10.1080/01431160802168186

    Article  Google Scholar 

  21. Tebo BM, Davis RE, Anitori RP, Connell LB, Schiffman P, Staudigel H (2015) Microbial communities in dark oligotrophic volcanic ice cave ecosystems of Mt. Erebus, Antarctica. Front Microbiol 6:179. doi:10.3389/fmicb.2015.00179

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zimbelman DR, Rye RO, Landis GP (2000) Fumaroles in ice caves on the summit of Mount Rainier—preliminary stable isotope, gas, and geochemical studies. J Volcan Geotherm Res 97:457–473. doi:10.1016/S0377-0273(99)00180-8

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Thanks to Jeroen Nederlof, Roanna Richards-Babbage, Leslie Astbury and Georgia Wakerley for laboratory assistance and advice, and Antarctica New Zealand for logistical support. CIF was funded by an ARC DECRA (DE140101715). CKL and SCC were supported by the New Zealand Marsden Fund (UOW0802 & UOW1003), the National Science Foundation (ANT 0739648) and the New Zealand Ministry of Business, Innovation, and Employment (UOWX1401).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ceridwen I. Fraser.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 547 kb)

Supplementary material 2 (XLSX 61 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fraser, C.I., Connell, L., Lee, C.K. et al. Evidence of plant and animal communities at exposed and subglacial (cave) geothermal sites in Antarctica. Polar Biol 41, 417–421 (2018). https://doi.org/10.1007/s00300-017-2198-9

Download citation

Keywords

  • Volcano
  • Polar
  • Environmental DNA eDNA
  • Refugia
  • Subglacial