Advertisement

Polar Biology

, Volume 40, Issue 12, pp 2489–2498 | Cite as

Life history trait variation of Greenland lumpfish (Cyclopterus lumpus) along a 1600 km latitudinal gradient

  • Rasmus Berg Hedeholm
  • Søren Post
  • Peter Grønkjær
Original Paper

Abstract

Lumpfish (Cyclopterus lumpus) is a highly commercial semi-pelagic fish found throughout the North Atlantic. In West Greenland, lumpfish are distributed along a 1600 km continuous north–south gradient, and is an ideal candidate for studying the effects of latitude and environment on key life history traits (LHT). We describe the spatial variation in length-weight relationships, size-at-age and age-at-maturity in pre-spawning adult males and females in six areas from south (60.7°N, area 1) to north (72.8°N, area 6) and estimate the reproductive output of females as a product of fecundity and individual egg energy content. All the studied LHT varied significantly among areas. The average age of both sexes was approximately three years in the areas 1–3 and gradually increased to approximately four years in area 6. Fecundity and individual egg energy content increased from area 2 to area 5 and then decreased in area 6. Consequently, the relative reproductive output (kJ gonad/kg fish) ranged from 1.21 ± 0.38 in area 6 to 2.53 ± 0.84 in area 5. These spatial differences are hypothetically explained by variations in secondary production and temperature.

Keywords

Reproductive output Latitudinal gradient Energy allocation Habitat suitability Lumpsucker 

Notes

Acknowledgements

The study received financial support from the Greenland Institute of Natural Resources and the authors would like to thank M. Olsen and three anonymous reviewers who provided comments on earlier versions of the manuscript.

References

  1. Albert OT, Torstensen E, Bertelsen B, Jonsson ST, Pettersen IH, Holst JC (2002) Age-reading of lumpsucker (Cyclopterus lumpus) otoliths: dissection, interpretation and comparison with length frequencies. Fish Res 55:239–252. doi: 10.1016/S0165-7836(01)00281-8 CrossRefGoogle Scholar
  2. Baynes SM, Howell BR (1996) The influence of egg size and incubation temperature on the condition of Solea solea (L.) larvae at hatching and first feeding. J Exp Mar Bio Ecol 199:59–77. doi: 10.1016/0022-0981(95)00189-1 CrossRefGoogle Scholar
  3. Brander KM (1995) The effect of temperature on growth of Atlantic cod (Gadus morhua L.). ICES J Mar Sci 52:1–10. doi: 10.1016/1054-3139(95)80010-7 CrossRefGoogle Scholar
  4. Burmeister A, Kingsley MCS (2014) West Greenland trawl survey for Pandalus borealis, 2014, with reference to earlier results. NAFO Sci Counc Res Doc 14:058Google Scholar
  5. Chambers RC, Leggett WC, Brown JA (1989) Egg size, female effects, and the correlations between early life history traits of capelin, Mallotus villosus: an appraisal at the individual level. Fish Bull 87:515–523Google Scholar
  6. Christiansen JS, Præbel K, Siikavuopio SI, Carscadden JE (2008) Facultative semelparity in capelin Mallotus villosus (Osmeridae)—an experimental test of a life history phenomenon in a sub-arctic fish. J Exp Mar Bio Ecol 360:47–55. doi: 10.1016/j.jembe.2008.04.003 CrossRefGoogle Scholar
  7. Clausen D, Johansen KL, Mosbech A, Boertmann D, Wegeberg S (2012) Environmental oil spill sensitivity Atlas for the West Greenland (68°N–72° N) Coastal Zone, 2nd revised edition, p 498Google Scholar
  8. Conover DO, Present TMC (1990) Countergradient variation in growth rate: compensation for length of the growing season among Atlantic silversides from different latitudes. Oecologia 83:316–324CrossRefPubMedGoogle Scholar
  9. Davenport J (1985) Synopsis of biological data on the lumpsucker Cyclopterus lumpus (Linnaeus, 1758). FAO Fish Synopsis 147:31Google Scholar
  10. Drinkwater KF (2005) The response of Atlantic cod (Gadus morhua) to future climate change. ICES J Mar Sci 62:1327–1337. doi: 10.1016/j.icesjms.2005.05.015 CrossRefGoogle Scholar
  11. Durif CMF, van Ginneken V, Dufour S, Müller T, Elie P (2009) Seasonal evolution and individual differences in silvering eels from different locations. In: Van den Thillart G, Dufour S, Rankin JC (eds) Spawning migration of the European eel: reproduction index, a useful tool for conservation management, Fish and Fisheries Series 30, Springer, pp 13–38Google Scholar
  12. Friis-Rødel E, Kanneworff P (2002) A review of capelin (Mallotus villosus) in Greenland waters. ICES J Mar Sci 59:890–896. doi: 10.1006/jmsc.2002.1242 CrossRefGoogle Scholar
  13. Garcia-Mayoral E, Olsen M, Hedeholm RB, Post S, Nielsen EE, Bekkevold D (2016) Genetic structure of West Greenland populations of lumpfish (Cyclopterus lumpus). J Fish Biol 89:2625–2642. doi: 10.1111/jfb.13167 CrossRefPubMedGoogle Scholar
  14. Glebe B, Leggett W (1981) Latitudinal differences in energy allocation and use during the freshwater migrations of American Shad (Alosa sapidissima) and their life history consequences. Can J Aquat Sci 38:806–820. doi: 10.1139/f81-109 CrossRefGoogle Scholar
  15. Groot C, Margolis L (1991) Pacific Salmon life histories. UBC Press, Vancouver, p 564Google Scholar
  16. Hedeholm R, Grønkjær P, Rysgaard S (2010) Variation in size and growth of West Greenland capelin (Mallotus villosus) along latitudinal gradients. ICES J Mar Sci 67:1128–1137CrossRefGoogle Scholar
  17. Hedeholm R, Grønkjær P, Rysgaard S (2011) Energy content and fecundity of capelin (Mallotus villosus) along a 1500 km latitudinal gradient. Mar Biol 158:1319–1330. doi: 10.1007/s00227-011-1651-5 CrossRefGoogle Scholar
  18. Hedeholm R, Blicher ME, Grønkjær P (2014) First estimates of age and production of lumpsucker (Cyclopterus lumpus) in Greenland. Fish Res 149:1–4. doi: 10.1016/j.fishres.2013.08.016 CrossRefGoogle Scholar
  19. Holst JC (1993) Observations on the distribution of lumpsucker (Cyclopterus lumpus, L.) in the Norwegian Sea. Fish Res 17:369–372CrossRefGoogle Scholar
  20. Hovgård H, Wieland K (2008) Fishery and environmental aspects relevant for the emergence and decline of Atlantic cod (Gadus morhua) in West Greenland waters. In: Kruse GH, Drinkwater KF, Ianelli JN et al (eds) Resiliency of gadid stocks to fishing and climate change. University of Alaska Sea Grant, Fairbanks, pp 89–110CrossRefGoogle Scholar
  21. Hunter A, Speirs DC, Heath MR (2015) Fishery-induced changes to age and length dependent maturation schedules of three demersal fish species in the Firth of Clyde. Fish Res 170:14–23. doi: 10.1016/j.fishres.2015.05.004 CrossRefGoogle Scholar
  22. ICES (2016a) Report of the Working Group of International Pelagic Surveys (WGIPS), 18–22 January 2016, Dublin, Ireland. ICES CM 2016/SSGIEOM:05, p 433Google Scholar
  23. ICES (2016b) Report of the North–Western Working Group (NWWG), 27 April–4 May 2016, ICES HQ. Copenhagen, Denmark. ICES CM 2016/ACOM:08, p 703Google Scholar
  24. Jennings S, Kaiser MJ, Reynolds JD (2001) Marine fisheries ecology. Blackwell Science, Oxford, p 417Google Scholar
  25. Jensen LM, Topp-Jørgensen E, Christensen TR (eds) (2016) Nuuk ecological research operations 8th annual report, 2014, Aarhus University, DCE – Danish Centre for Environment and Energy, p 86Google Scholar
  26. Kasper JM, Bertelsen B, Ólafsson HG, Holst JC, Sturlaugsson J, Jónsson SP (2014) Observations of growth and postspawning survival of lumpfish Cyclopterus lumpus from mark-recapture studies. J Fish Biol 84:1958–1963. doi: 10.1111/jfb.12389 CrossRefPubMedGoogle Scholar
  27. Kennedy J, Jónsson SP, Kasper JM, Ólafsson HG (2015a) Movements of female lumpfish (Cyclopterus lumpus) around Iceland. ICES J Mar Sci 72:880–889CrossRefGoogle Scholar
  28. Kennedy J, Jónsson SP, Ólafsson HG, Kasper JM (2015b) Observations of vertical movements and depth distribution of migrating female lumpfish (Cyclopterus lumpus) in Iceland from data storage tags and trawl surveys. ICES J Mar Sci 73:1160–1169. doi: 10.1093/icesjms/fst048 CrossRefGoogle Scholar
  29. Kjesbu OS, Klungsøyr J, Kryvi H, Witthames PR, Walker MG (1991) Fecundity, Atresia, and egg size of captive Atlantic cod (Gadus morhua) in relation to proximate body composition. Can J Fish Aquat Sci 48:2333–2343CrossRefGoogle Scholar
  30. Kjesbu OS, Witthames PR, Solemdal P, Walker MG (1998) Temporal variations in the fecundity of Arcto-Norwegian cod (Gadus morhua) in response to natural changes in food and temperature. J Sea Res 40:303–321CrossRefGoogle Scholar
  31. Kraus G, Müller A, Trella K, Koster W (2000) Fecundity of Baltic cod: temporal and spatial variation. J Fish Biol 56:1327–1341. doi: 10.1006/jfbi.2000.1251 CrossRefGoogle Scholar
  32. Lloret J, Rätz H-J (2000) Condition of cod (Gadus morhua) off Greenland during 1982–1998. Fish Res 48:79–86. doi: 10.1016/S0165-7836(00)00111-9 CrossRefGoogle Scholar
  33. Lucassen M, Koschnick N, Eckerle LG, Pörtner HO (2006) Mitochondrial mechanisms of cold adaptation in cod (Gadus morhua L.) populations from different climatic zones. J Exp Biol 209:2462–2471. doi: 10.1242/Jeb.02268 CrossRefPubMedGoogle Scholar
  34. Marteinsdottir G, Begg GA (2002) Essential relationships incorporating the influence of age, size and condition on variables required for estimation of reproductive potential in Atlantic cod Gadus morhua. Mar Ecol Prog Ser 235:235–256. doi: 10.3354/meps235235 CrossRefGoogle Scholar
  35. Marteinsdottir G, Steinarsson A (1998) Maternal influence on the size and viability of Iceland cod Gadus morhua eggs and larvae. J Fish Biol 52:1241–1258. doi: 10.1111/j.1095-8649.1998.tb00969.x Google Scholar
  36. Mortensen J (2015) Report on hydrographic conditions off Southwest Greenland June/July 2014. NAFO SCR Doc. 15/01, pp 1–6Google Scholar
  37. Murua H, Kraus G, Saborido-Rey F, Witthames PR, Thorsen A, Junquera S (2003) Procedures to estimate fecundity of marine fish species in relation to their reproductive strategy. J Northwest Atl Fish Sci 33:33–54CrossRefGoogle Scholar
  38. Neuheimer AB, Grønkjær P (2012) Climate effects on size-at-age: growth in warming waters compensates for earlier maturity in an exploited marine fish. Glob Chang Biol 18:1812–1822. doi: 10.1111/j.1365-2486.2012.02673.x CrossRefGoogle Scholar
  39. Neuheimer AB, Thresher RE, Lyle JM, Semmens JM (2011) Tolerance limit for fish growth exceeded by warming waters. Nat Clim Chang 1:110–113. doi: 10.1038/nclimate1084 CrossRefGoogle Scholar
  40. Pedersen SA, Smidt ELB (2000) Zooplankton distribution and abundance in west Greenland waters, 1950–1984. J Northwest Atl Fish Sci 26:45–102. doi: 10.2960/J.v26.a4 CrossRefGoogle Scholar
  41. Perry AL (2005) Climate change and distribution shifts in marine fishes. Science 308:1912–1915. doi: 10.1126/science.1111322 CrossRefPubMedGoogle Scholar
  42. Power M, Dempson JB, Reist JD, Schwarz CJ, Power G (2005) Latitudinal variation in fecundity among Arctic charr populations in eastern North America. J Fish Biol 67:255–273. doi: 10.1111/j.1095-8649.2005.00734.x CrossRefGoogle Scholar
  43. R Core Team (2014) A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. http://www.r-project.org/
  44. Ribergaard MH (2014) Oceanographic Investigations off West Greenland 2013. Danish Meteorological Institute. Cent Ocean Ice, p 49Google Scholar
  45. Stenberg C, Ribergaard MH, Boje J, Sundby S (2016) Larval drift and settling of Greenland halibut (R. hippoglossoides Walbaum) in Northwest Atlantic with special focus on Greenlandic waters. Danish Meteorological Institute. DMI Report, pp 16–21Google Scholar
  46. Storr-Paulsen M, Wieland K, Hovgård H, Rätz HJ (2004) Stock structure of Atlantic cod (Gadus morhua) in West Greenland waters: implications of transport and migration. ICES J Mar Sci 61:972–982. doi: 10.1016/j.icesjms.2004.07.021 CrossRefGoogle Scholar
  47. Swain DP, Sinclair AF, Mark Hanson J (2007) Evolutionary response to size-selective mortality in an exploited fish population. Proc Biol Sci 274:1015–1022. doi: 10.1098/rspb.2006.0275 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Thorsen A, Kjesbu OS, Fyhn H, Solemdal P (1996) Physiological mechanisms of buoyancy in eggs from brackish water cod. J Fish Biol 32:2503–2512Google Scholar
  49. Ware DM (1975) Relation between egg size, growth, and natural mortality of larval fish. J Fish Res Board Canada 32:2503–2512CrossRefGoogle Scholar
  50. Williams T, Bedford BC (1974) The use of otoliths for age determination. In: Bagenal TB (ed) The ageing of fish. Unwin Brothers, Surrey, pp 114–123Google Scholar
  51. Zhao Y (2001) Impacts of egg and larval size on survival and growth of Atlantic cod under different feeding conditions. J Fish Biol 59:569–581. doi: 10.1006/jfbi.2001.1666 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Rasmus Berg Hedeholm
    • 1
  • Søren Post
    • 1
  • Peter Grønkjær
    • 2
  1. 1.Greenland Institute of Natural ResourcesNuukGreenland
  2. 2.Department of BioscienceAarhus UniversityAarhusDenmark

Personalised recommendations