Acuña-Rodríguez I, Osses R, Cortés-Vásquez J, Torres C, Molina-Montenegro MA (2014) Genetic diversity of Colobanthus quitensis across the Drake Passage. Plant Genet Resour 12:147–150. doi:10.1017/S1479262113000270
Article
Google Scholar
Alberdi M, Bravo LA, Gutierrez A, Gidekel M, Corcuera LJ (2002) Ecophysiology of Antarctic vascular plants. Physiol Plant 115:479–486. doi:10.1034/j.1399-3054.2002.1150401.x
CAS
Article
PubMed
Google Scholar
Alexander JM, Edwards PJ (2010) Limits to the niche and range margins of alien species. Oikos 37:1377–1386. doi:10.1111/j.1600-0706.2009.17977.x
Article
Google Scholar
Allendorf FW, Hohenlohe PA, Luikart G (2010) Genomics and the future of conservation genetic. Nat Rev Genet 11:679–709. doi:10.1038/nrg2844
Article
Google Scholar
Androsiuk P, Chwedorzeswska K, Szandar K, Giełwanowska I (2015) Genetic variability of Colobanthus quitensis from King George Island (Antarctica). Pol Polar Res 36:281–295. doi:10.1515/popore-2015-0017
Google Scholar
Archibald JK, Crawford DJ, Santos-Guerra A, Mort ME (2006) The utility of automated analysis of inter-simple sequence repeat (ISSR) loci for resolving relationships in the canary island species of tolpis. Am J Bot 93:1154–1162. doi:10.3732/ajb.93.8.1154
CAS
Article
PubMed
Google Scholar
Bascuñán-Godoy L, Uribe E, Zúñiga-Feest A, Corcuera LJ, Bravo LA (2006) Low temperatura regulates sucrose-phosphate synthase activity in Colobanthus quitensis (Kunth) Bartl. By decreasing its sensitivity to Pi and increased activation by glucose-6-phosphate. Polar Biol 29:1011–1017. doi:10.1007/s00300-006-0144-3
Article
Google Scholar
Bascuñán-Godoy L, García-Plazaola J, Bravo LA, Corcuera LJ (2010) Leaf functional and micro-morphological photoprotective attributes in two ecotypes of Colobanthus quitensis from the Andes and Maritime Antarctic. Polar Biol 33:885–896. doi:10.1007/s00300-010-0765-4
Article
Google Scholar
Bascuñán-Godoy L, Sanhueza C, Cuba-Díaz M, Zúñiga GE, Corcuera LJ, Bravo LA (2012) Cold acclimation limits low temperature induced photoinhibition by promoting a higher photochemical quantum yield and a more effective PSII restoration in darkness in the Antarctic rather than the Andean ecotype of Colobanthus quitensis Kunth Bartl (Cariophyllaceae). BMC Plant Biol 12:114. doi:10.1186/1471-2229-12-114
Article
PubMed
PubMed Central
Google Scholar
Beyer L, Bölter M, Seppelt RD (2000) Nutrient and thermal regime, microbial biomass and vegetation of Antarctic soils in the Windmill Islands Region of east Antarctica (Wilkes Land). Arct Antarct Alp Res 32:30–39. doi:10.2307/1552407
Article
Google Scholar
Bokhorst S, Huiskes AHL, Convey P, Sinclair BJ, Lebouvier M, Van de Vijver B, Wall DH (2011) Microclimate impacts of passive warming methods in Antarctica: implications for climate change studies. Polar Biol 34:1421–1435. doi:10.1007/s00300-011-0997-y
Article
Google Scholar
Bradshaw AD, Hardwick K (1989) Evolution and stress genotypic and phenotypic components. Biol J Linn Soc 37:137–155. doi:10.1111/j.1095-8312.1989.tb02099.x
Article
Google Scholar
Bravo LA, Saavedra-Mella FA, Vera F, Guerra A, Cavieres LA, Ivanov AL, Huner NP, Corcuera LJ (2007) Effect of cold acclimation on the photosynthetic performance of two ecotypes of Colobanthus quitensis (Kunth) Bartl. J Exp Bot 58:3581–3590
CAS
Article
PubMed
Google Scholar
Carlquist S (1974) Island biology. Columbia University Press, New York. doi:10.5962/bhl.title.63768
Book
Google Scholar
Convey P (1996) Reproduction of Antarctic flowering plants. Antarct Sci 8:127–134. doi:10.1017/S0954102096000193
Google Scholar
Convey P (2010) Terrestrial biodiversity in Antarctica: recent advances and future challenges. Polar Sci 4:135–147. doi:10.1016/j.polar.2010.03.003
Article
Google Scholar
Convey P (2011) Antarctic terrestrial biodiversity in a changing world. Polar Biol 34:1629–1641. doi:10.1007/s00300-011-1068-0
Article
Google Scholar
Convey P (2013) Antarctic ecosystems. Encyclopedia of biodiversity. Elsevier, San Diego. doi:10.1016/b978-0-12-384719-5.00264-1
Google Scholar
Convey P, Gibson JAE, Hillenbrand CD, Hodgson DA, Pugh PJA, Smellie JL, Stevens ML (2008) Antarctic terrestrial life—challenging the history of the frozen continent? Biol Rev 83:103–117. doi:10.1111/j.1469-185x.2008.00034.x
Article
PubMed
Google Scholar
Convey P, Bindschadler RA, Di Prisco G, Fahrbach E, Gutt J, Hodgson DA, Mayewski CP (2009) Antarctic climate change and the environment. Antarct Sci 21:541–563. doi:10.1017/s0954102009990642
Article
Google Scholar
Convey P, Hopkins DW, Roberts SJ, Tyler AN (2011) Global southern limit for flowering plants and moss peat accumulation. Polar Res 30:8929. doi:10.3402/polar.v30i0.8929
Article
Google Scholar
Convey P, Chown SL, Clarke A, Barnes DKA, Cummings V, Ducklow H, Frati F, Green TGA, Gordon S, Griffiths H, Howard-Williams C, Huiskes AHL, Laybourn-Parry J, Lyons B, McMinn A, Peck LS, Quesada A, Schiaparelli S, Wall D (2014) The spatial structure of Antarctic biodiversity. Ecol Monogr 84:203244. doi:10.1890/12-2216.1
Article
Google Scholar
Cordero C (2012) Caracterización y análisis de variabilidad moroflógica y genética en poblaciones de Colobanthus quitensis (KUNTH) Bartl. (Caryophylaceae) [Undergraduate thesis. Plant Biotechnology Eng.]. Universidad de Concepción, Chile
Cuba-Díaz M (2011) El clavelito antártico y los mecanismos que lo protegen del frio polar. Bol Antárt Chil 30:8–9
Google Scholar
Cuba-Díaz M, Cid K, Navarrete A, Retamal C, Bravo LA (2011). Cold and photoperiod regulated expression of sucrose phosphate synthase (SPS) favors sucrose accumulation in Colobanthus quitensis during the Antarctic summer. In: Bravo LA, Leppe M (eds) VIII Reunión Chilena de Investigación Antártica Libro Resumen, pp 98–102. http://www.inach.cl/wp-content/uploads/2011/08. Accessed 30 Oct 2011
Cuba-Díaz M, Acuña D, Klagges M, Dollenz O, Cordero C (2013) Colobanthus quitensis de la Marisma, una nueva población para la colección genética de la especie. In: Leppe M, Molina-Montenegro M, González M, MacDonell S, Lavín P, Oses R, Gallardo J, Rivadeneira M, Arata J, Canales R (eds) Avances en Ciencia Antártica Latinoamericana. VII Congreso Latinoamericano de Ciencia Antártica, pp 436–439
Dewoody J, Trewin H, Taylor G (2015) Genetic and morphological differentiation in Populus nigra L.: isolation by colonization or isolation by adaptation? Mol Ecol 24:2641–2655. doi:10.1111/mec.13192
Article
PubMed
PubMed Central
Google Scholar
Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform 1:47–50
CAS
Article
Google Scholar
Gianoli E, Zuñiga-Feest A, Reyes-Diaz M, Bravo LA, Corcuera LJ (2004) Ecotypic differentiation in morphology and cold resistance in populations of Colobanthus quitensis from the Andes of central Chile and the maritime Antarctic. Arct Antarct Alp Res 36:470–475. doi:10.1657/1523-0430(2004)036[0484:edimac]2.0.co;2
Article
Google Scholar
Haider S, Alexander J, Kueffer C (2011) Elevational distribution limits of non-native species: combining observational and experimental evidence. Plant Ecol Divers 4:363–371. doi:10.1080/17550874.2011.637973
Article
Google Scholar
Hamrick JL, Godt JW (1996) Effects of life history traits on genetic diversity in plant species. Philos Trans R Soc B 351:1291–1298. doi:10.1098/rstb.1996.0112
Article
Google Scholar
Hartl DL, Clark AG (1997) Principles of population genetics, 3rd edn. Sinauer Associates, Inc., Sunderland
Google Scholar
Jelling AJ, Usher MB, Leech RM (1983) Variation in the chloroplast to cell area index in Deschampsia antarctica along a 16° latitudinal gradient. Brit Antarct Surv B 61:13–20
Google Scholar
Kellman-Sopyla W, Giełwanowska I (2015) Germination capacity of five polar Caryophyllaceae and Poaceae species under different temperature conditions. Polar Biol 38:1753–1765. doi:10.1007/s00300-015-1740-x
Article
Google Scholar
Kimura M, Crow JF (1964) The number of alleles that can be maintained in a finite population. Genetics 49:725–738. doi:10.1016/0040-5809(71)90033-5
CAS
PubMed
PubMed Central
Google Scholar
Klagges M, Cordero C, Cuba-Díaz M (2013) Las poblaciones de Colobanthus quitensis presentan diferenciaciones morfo-fisiológicas que podrían evidenciar la formación de ecotipo en su hábitat. In: Leppe M, Molina-Montenegro M, González M, MacDonell S, Lavín P, Oses R, Gallardo J, Rivadeneira M, Arata J, Canales R. eds. Avances en Ciencia Antártica Latinoamericana. VII Congreso Latinoamericano de Ciencia Antártica
Körner CH (2003) Alpine plant life. Functional plant ecology of high mountain ecosystems. Springer, Berlin
Google Scholar
Kremer A, Kleinschmit J, Cottrell J, Cundall EP, Deans JD, Ducousso A, König AO, Lowe AJ, Munro RC, Petit RJ, Stephane BR (2002) Is there a correlation between chloroplastic and nuclear divergence, or what are the roles of history and selection on genetic diversity in European oaks? For Ecol Manag 156:75–87. doi:10.1016/s0378-1127(01)00635-1
Article
Google Scholar
Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220
CAS
PubMed
Google Scholar
Manzur MI (2006) La diversidad genética, biodiversidad de Chile, patrimonio y desafíos. Comisión Nacional del Medio Ambiente de Chile
McGraw JB, Day TA (1997) Size and characteristics of a natural seed bank in Antarctic. Arct Antarct Alp Res 29:213–216. doi:10.2307/1552048
Article
Google Scholar
Miller MP (1997) Tools for population genetic analyses (TFPGA). Northern. Arizona University, Flagstaff. http://www.ccg.unam.mx/~vinuesa/tlem09/docs/TFPGADOC.PDF
Molina-Montenegro MA, Quiroz CL, Torres-Díaz C, Atala C (2011) Functional differences in response to drought in the invasive Taraxacum officinale from native and introduced alpine habitat ranges. Plant Ecol Div 4:37–44. doi:10.1080/17550874.2011.577459
Article
Google Scholar
Molina-Montenegro MA, Torres-Díaz C, Carrasco-Urra F, González-Silvestre LA, Gianoli E (2012) Phenotypic plasticity in two antarctic populations of Colobanthus quitensis (Caryophyllaceae) under a simulated global change scenario. Gayana Bot 69:152–160
Article
Google Scholar
Monty A, Mahy G (2009) Climal differentiation during invasion: senecio inaequidens (Asteraceae) along altitudinal gradients in Europe. Oecologia 159:305–315. doi:10.1007/s00442-008-1228-2
Article
PubMed
Google Scholar
Moore DM (1970) Studies in Colobanthus quitensis (Kunth) Bartl. and Deschampsia antarctica Desv. II. Taxonomy, distribution and relationships. Br Antarct Surv B 23:63–80
Google Scholar
Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x
CAS
Article
Google Scholar
Nei M (1972) Genetic distance between populations. Am Nat 106:283–292. doi:10.1086/282771
Article
Google Scholar
Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323. doi:10.1073/pnas.70.12.3321
CAS
Article
PubMed
PubMed Central
Google Scholar
Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273. doi:10.1073/pnas.76.10.5269
CAS
Article
PubMed
PubMed Central
Google Scholar
Parnikoza I, Kozeretska I, Kunakh V (2011) Vascular plants of the maritime Antarctic: origin and adaptation. Am J Plant Sci 2:381–395. doi:10.4236/ajps.2011.23044
Article
Google Scholar
Piña-Escutia JL, Vences-Contreras C, Gutiérrez-Martínez G, Vásquez-García M, Arzate-Fernández A (2010) Morphological and molecular characterization of nine botanical varieties of Tigridia pavonia (L.f) DC. Agrociencia 44:147–158
Google Scholar
Poulin E, González-Wevar C, Díaz A, Gérard K, Hüne M (2014) Divergence between Antarctic and South American marine invertebrates: what molecular biology tells us about Scotia Arc geodynamics and the intensification of the Antarctic Circumpolar Current. Glob Plan Chang 123:392–399. doi:10.1016/j.gloplacha.2014.07.017
Article
Google Scholar
Romero M, Casanova A, Iturra G, Reyes A, Montenegro G, Alberdi M (1999) Leaf anatomy of Deschampsia antarctica (Poaceae) from the maritime Antarctic and its plastic response to changes in growth conditions. Rev Chil Hist Nat 72:411–425
Google Scholar
Royer DL, McElwain JC, Adams JM, Wilf P (2008) Sensitivity of leaf size and shape to climate within Acer rubrum and Quercus kelloggii. New Phytol 179:808–817. doi:10.1111/j.1469-8137.2008.02496.x
Article
PubMed
Google Scholar
Ruhland CT, Day TA (2001) Size and longevity of seed banks in Antarctica and the influence of ultraviolet-B radiation on survivorship, growth and pigment concentrations of Colobanthus quitensis seedlings. Environ Exp Bot 45:143–154. doi:10.1016/s0098-8472(00)00089-7
CAS
Article
PubMed
Google Scholar
Ruiz E, Balboa K, Negritto M, Baeza C, Fuentes G, Briceño V (2010) Genetic and morphological variation and population structure in Alstroemeria hookeri subsp. hookeri (Alstroemeriaceae), endemic to Chile. Rev Chil Hist Nat 83:605–616. doi:10.4067/s0716-078x2010000400013
Article
Google Scholar
Salinas N, Armijos V, Jiménez P, Proaño K (2011) Caracterización y estudio de la diversidad genética del piñón (Jatropha curcas) mediantes el uso de marcadores moleculares. Ciencia 14:31–40
Google Scholar
Sanhueza C, Vallejos V, Cavieres LA, Sáez P, Bravo LA, Corcuera LJ (2017) Growing temperature affects seed germination of the antarctic plant Colobanthus quitensis (Kunth) Bartl (Caryophyllaceae). Polar Biol 40:449–455. doi:10.1007/s00300-016-1972-4
Shannon CE, Weaver W (1949) The mathematical theory of communication. The University of Illinois Press, Urbana
Google Scholar
Smith RIL (2003) The enigma of Colobanthus quitensis and Deschampsia antartica. In: Huiskes AHL, Gieskes WWC, Rozema J, Schoro RML, van der Vies SM, Wolff WJ (eds) Antarctic biology in a global context, pp 34–239
Sneath PHA, Sokal RR (1973) Numerical taxonomy: the principles and practice of numerical classification. W.H Freeman Company, San Francisco. doi:10.2307/2412767
Google Scholar
Suma N, Srimathi P (2014) Influence of water flotation technique on seed and seedling quality characteristics of Sesamum indicum. IOSR J Agric Vet Sci 7:51–53. doi:10.9790/2380-07825153
Article
Google Scholar
Westergaard KB, Alsos IG, Popp M, Engelskjøn T, Flatberg KI, Brochmann C (2011) Glacial survival may matter after all: nunatak signatures in the rare European populations of two west-arctic species. Mol Ecol 20:376–393. doi:10.1111/j.1365-294x.2010.04928.x
Article
PubMed
Google Scholar
Wirtz N, Printzen C, Thorsten Lumbsch H (2012) Using haplotype networks, estimation of gene flow and phenotypic characters to understand species delimitation in fungi of a predominantly Antarctic Usnea group (Ascomycota, Parmeliaceae). Org Divers Evol 12:17–37. doi:10.1007/s13127-011-0066-y
Article
Google Scholar
Xiong FS, Day TA (2001) Effect of solar ultraviolet-B radiation during springtime ozone depletion on photosynthesis and biomass production of antarctic vascular plants. Plant Physiol 125:738–751. doi:10.1104/pp.125.2.738
CAS
Article
PubMed
PubMed Central
Google Scholar
Yeh FC, Yang RC, Boyle T (1999) PopGene Microsoft windows-based freeware for population genetic analysis. University of Alberta, Edmonton. http://www.ualberta.ca/fyeh/popgene.download.html. Accessed 12 Jan 2014
Zúñiga-Feest A, Bascuñán-Godoy L, Reyes-Díaz M, Bravo LA, Corcuera LJ (2009) Is survival after ice encasement related with sugar distribution in organs of the Antarctic plants Deschampsia antarctica Desv. (Poaceae) and Colobanthus quitensis (Kunth) Bartl. (Caryophyllaceae). Polar Biol 32:583–591. doi:10.1007/s00300-008-0553-6
Article
Google Scholar