Skip to main content

The role of local and regional environmental factors for Calanus finmarchicus and C. hyperboreus abundances in the Nordic Seas

Abstract

In the advective realm of the seas, it is challenging to disentangle the role of regional and local processes on zooplankton populations. However, comparative studies of spatially separated zooplankton populations can provide valuable insights into this issue. We studied interannual abundance variation of the key zooplankton species Calanus finmarchicus and C. hyperboreus in three near-shore locations of the Nordic Seas: off northern Norway, Svalbard, and northern Iceland. Average abundances of both species were similar among locations, while in each location the abundance of C. finmarchicus was about an order of magnitude higher than the abundance of C. hyperboreus. The abundance of both species decreased in northern Norway, while C. finmarchicus abundance increased in northern Iceland. C. finmarchicus abundance in northern Norway covaried with regional climate, while the Svalbard Calanus populations were related to local environment (hydrography, phytoplankton). In northern Iceland, C. finmarchicus abundance covaried with local environmental factors, while C. hyperboreus abundance covaried with climate variability. Top-down forcing could not be investigated. The results indicate that the mechanisms relating regional climate variability (North Atlantic and Arctic oscillations) to Calanus abundance are mediated through advection of water masses, while more local environmental variability involved bottom-up processes or advection.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Aksnes DL, Blindheim J (1996) Circulation patterns in the North Atlantic and possible impact on population dynamics of Calanus finmarchicus. Ophelia 44:7–28. doi:10.1080/00785326.1995.10429836

    Article  Google Scholar 

  2. Astthorsson O, Hallgrimsson I, Jónsson GS (1983) Variations in zooplankton densities in Icelandic waters in spring during the years 1961–1982. Rit Fiskideildar 7:73–113

    Google Scholar 

  3. Bagøien E, Kaartvedt S, Aksnes DL, Eiane K (2001) Vertical distribution and mortality of overwintering Calanus. Limnol Oceanogr 46:1494–1510. doi:10.4319/lo.2001.46.6.1494

    Article  Google Scholar 

  4. Batchelder HP, Mackas DL, O’Brien TD (2012) Spatial–temporal scales of synchrony in marine zooplankton biomass and abundance patterns: A world-wide comparison. Prog Oceanogr 97:15–30. doi:10.1016/j.pocean.2011.11.010

    Article  Google Scholar 

  5. Beaugrand G (2012) Unanticipated biological changes and global warming. Mar Ecol Prog Ser 445:293–301. doi:10.3354/meps09493

    Article  Google Scholar 

  6. Beaugrand G, Reid PC, Ibañez F, Lindley JA, Edwards M (2002) Reorganization of North Atlantic marine copepod biodiversity and climate. Science 296:1692–1694. doi:10.1126/science.1071329

    CAS  PubMed  Article  Google Scholar 

  7. Blindheim J, Østerhus S (2005) The Nordic Seas, main oceanographic features. In: Drange H, Dokken T, Furevik T, Gerdes R, Berger W (eds) The Nordic Seas: an integrated perspective oceanography, climatology, biogeochemistry, and modeling, vol 158. AGU, Washington, DC, pp 11–37

    Chapter  Google Scholar 

  8. Blindheim J, Borovkov V, Hansen B, Malmberg SA, Turrell WR, Østerhus S (2000) Upper layer cooling and freshening in the Norwegian Sea in relation to atmospheric forcing. Deep Sea Res Part I 47:655–680. doi:10.1016/S0967-0637(99)00070-9

    Article  Google Scholar 

  9. Broms C, Melle W, Kaartvedt S (2009) Oceanic distribution and life cycle of Calanus species in the Norwegian Sea and adjacent waters. Deep Sea Res Part II 56:1910–1921. doi:10.1016/j.dsr2.2008.11.005

    Article  Google Scholar 

  10. Campbell RG, Wagner MM, Teegarden GJ, Boudreau CA, Durbin EG (2001) Growth and development rates of the copepod Calanus finmarchicus reared in the laboratory. Mar Ecol Prog Ser 221:161–183. doi:10.3354/meps221161

    Article  Google Scholar 

  11. Carscadden JE, Gjøsæter H, Vilhjálmsson H (2013) Recruitment in the Barents Sea, Icelandic, and eastern Newfoundland/Labrador capelin (Mallotus villosus) stocks. Prog Oceanogr 114:84–96. doi:10.1016/j.pocean.2013.05.006

    Article  Google Scholar 

  12. Carstensen J, Weydmann A, Olszewska A, Kwasniewski S (2012) Effects of environmental conditions on the biomass of Calanus spp. in the Nordic Seas. J Plankton Res 34:951–966. doi:10.1093/plankt/fbs059

    Article  Google Scholar 

  13. Chust G, Castellani C, Licandro P, Ibaibarriaga L, Sagarminaga Y, Irigoien X (2013) Are Calanus spp. shifting poleward in the North Atlantic? A habitat modelling approach. ICES J Mar Sci 71:241–253. doi:10.1093/icesjms/fst147

    Article  Google Scholar 

  14. Cohen J, Barlow M (2005) The NAO, the AO, and global warming: how closely related? J Clim 18:4498–4513. doi:10.1175/JCLI3530.1

    Article  Google Scholar 

  15. Conover RJ (1988) Comparative life histories in the genera Calanus and Neocalanus in high latitudes of the northern hemisphere. Hydrobiologia 167(168):127–142

    Article  Google Scholar 

  16. Conversi A, Piontkovski S, Hameed S (2001) Seasonal and interannual dynamics of Calanus finmarchicus in the Gulf of Maine (Northeastern US shelf) with reference to the North Atlantic Oscillation. Deep Sea Res Part II 48:519–530. doi:10.1016/S0967-0645(00)00088-6

    Article  Google Scholar 

  17. Cook KB, Bunker A, Hay S, Hirst AG, Speirs DC (2007) Naupliar development times and survival of the copepods Calanus helgolandicus and Calanus finmarchicus in relation to food and temperature. J Plankton Res 29:757–767. doi:10.1093/plankt/fbm056

    Article  Google Scholar 

  18. Cottier F, Tverberg V, Inall M, Svendsen H, Nilsen F, Griffiths C (2005) Water mass modification in an Arctic fjord through cross-shelf exchange: the seasonal hydrography of Kongsfjorden, Svalbard. J Geophys Res Oceans 110:C12005. doi:10.1029/2004JC002757

    Article  Google Scholar 

  19. Daase M, Eiane K (2007) Mesozooplankton distribution in northern Svalbard waters in relation to hydrography. Polar Biol 30:969–981. doi:10.1007/s00300-007-0255-5

    Article  Google Scholar 

  20. Daase M, Vik JO, Bagoien E, Stenseth NC, Eiane K (2007) The influence of advection on Calanus near Svalbard: statistical relations between salinity, temperature and copepod abundance. J Plankton Res 29:903–911. doi:10.1093/plankt/fbm068

    Article  Google Scholar 

  21. Daase M et al (2013) Timing of reproductive events in the marine copepod Calanus glacialis: a pan-Arctic perspective. Can J Fish Aquat Sci 70:871–884. doi:10.1139/cjfas-2012-0401

    Article  Google Scholar 

  22. Dalpadado P, Ellertsen B, Melle W, Dommasnes A (2000) Food and feeding conditions of Norwegian spring-spawning herring (Clupea harengus) through its feeding migrations. ICES J Mar Sci 57:843–857. doi:10.1006/jmsc.2000.0573

    Article  Google Scholar 

  23. Dickson B (1997) From the Labrador Sea to global change. Nature 386:649–650. doi:10.1038/386649a0

    CAS  Article  Google Scholar 

  24. Dickson R et al (2000) The Arctic ocean response to the North Atlantic oscillation. J Clim 13:2671–2696. doi:10.1175/1520-0442(2000)013<2671:TAORTT>2.0.CO;2

    Article  Google Scholar 

  25. Diel S, Tande K (1992) Does the spawning of Calanus finmarchicus in high latitudes follow a reproducible pattern? Mar Biol 113:21–31. doi:10.1007/bf00367634

    Article  Google Scholar 

  26. Drinkwater KF et al (2003) The response of marine ecosystems to climate variability associated with the North Atlantic Oscillation. Geophys Monogr Ser 134:211–234. doi:10.1029/134GM10

    Google Scholar 

  27. Drinkwater K, Colbourne E, Loeng H, Sundby S, Kristiansen T (2013) Comparison of the atmospheric forcing and oceanographic responses between the Labrador Sea and the Norwegian and Barents seas. Prog Oceanogr 114:11–25. doi:10.1016/j.pocean.2013.03.007

    Article  Google Scholar 

  28. Eiane K, Aksnes DL, Ohman MD, Wood S, Martinussen MB (2002) Stage-specific mortality of Calanus spp. under different predation regimes. Limnol Oceanogr 47:636–645. doi:10.4319/lo.2002.47.3.0636

    Article  Google Scholar 

  29. Ellertsen B, Fossum P, Sundby S, Tilseth S (1987) The effect of biological and physical factors on the survival of Arcto-Norwegian cod and the influence on recruitment variability. In: Loeng H (ed) The effect of oceanographic conditions on distribution and population dynamics of commercial fish stocks in the Barents Sea: proceedings of the third Soviet-Norwegian Symposium, Murmansk, 26–28 May 1986. Institute of Marine Research, Bergen, pp 101–126

    Google Scholar 

  30. Eloire D, Somerfield PJ, Conway DVP, Halsband-Lenk C, Harris R, Bonnet D (2010) Temporal variability and community composition of zooplankton at station L4 in the Western Channel: 20 years of sampling. J Plankton Res 32:657–679. doi:10.1093/plankt/fbq009

    Article  Google Scholar 

  31. Falk-Petersen S, Sargent JR, Middleton C (1986) Level and composition of triacylglycerols and wax esters in commercial capelin oils from the Barents Sea fishery, 1983. Sarsia 71:49–54. doi:10.1080/00364827.1986.10419673

    CAS  Article  Google Scholar 

  32. Falk-Petersen S, Pavlov V, Timofeev S, Sargent J (2007) Climate variability and possible effects on arctic food chains: the role of Calanus. In: Ørbæk J, Kallenborn R, Tombre I, Hegseth E, Falk-Petersen S, Hoel A (eds) Arctic alpine ecosystems and people in a changing environment. Springer, Berlin, pp 147–166. doi:10.1007/978-3-540-48514-8_9

    Chapter  Google Scholar 

  33. Falk-Petersen S, Mayzaud P, Kattner G, Sargent JR (2009) Lipids and life strategy of Arctic Calanus. Mar Biol Res 5:18–39. doi:10.1080/17451000802512267

    Article  Google Scholar 

  34. Fiksen Ø, Carlotti F (1998) A model of optimal life history and diel vertical migration in Calanus finmarchicus. Sarsia 83:129–147. doi:10.1080/00364827.1998.10413678

    Article  Google Scholar 

  35. Fromentin J, Planque B (1996) Calanus and environment in the eastern North Atlantic. 2. Influence of the North Atlantic Oscillation on C. finmarchicus and C. helgolandicus. Mar Ecol Prog Ser 134:111–118. doi:10.3354/meps134111

    Article  Google Scholar 

  36. Gabrielsen TM et al (2012) Potential misidentifications of two climate indicator species of the marine arctic ecosystem: Calanus glacialis and C. finmarchicus. Polar Biol 35:1621–1628. doi:10.1007/s00300-012-1202-7

    Article  Google Scholar 

  37. Gislason A, Silva T (2012) Abundance, composition, and development of zooplankton in the Subarctic Iceland Sea in 2006, 2007, and 2008. ICES J Mar Sci 69:1263–1276. doi:10.1093/icesjms/fss070

    Article  Google Scholar 

  38. Gislason A, Petursdottir H, Astthorsson OS, Gudmundsson K, Valdimarsson H (2009) Inter-annual variability in abundance and community structure of zooplankton south and north of Iceland in relation to environmental conditions in spring 1990–2007. J Plankton Res 31:541–551. doi:10.1093/plankt/fbp007

    CAS  Article  Google Scholar 

  39. Gislason A, Petursdottir H, Gudmundsson K (2014) Long-term changes in abundance of Calanus finmarchicus south and north of Iceland in relation to environmental conditions and regional diversity in spring 1990–2013. ICES J Mar Sci 71:2539–2549. doi:10.1093/icesjms/fsu098

    Article  Google Scholar 

  40. Greene CH, Pershing AJ (2000) The response of Calanus finmarchicus populations to climate variability in the Northwest Atlantic: basin-scale forcing associated with the North Atlantic Oscillation. ICES J Mar Sci 57:1536–1544. doi:10.1006/jmsc.2000.0966

    Article  Google Scholar 

  41. Greene CH et al (2003) Trans-Atlantic responses of Calanus finmarchicus populations to basin-scale forcing associated with the North Atlantic Oscillation. Prog Oceanogr 58:301–312. doi:10.1016/j.pocean.2003.08.009

    Article  Google Scholar 

  42. Halvorsen E (2015) Significance of lipid storage levels for reproductive output in the Arctic copepod Calanus hyperboreus. Mar Ecol Prog Ser 540:259–265. doi:10.3354/meps11528

    Article  Google Scholar 

  43. Hansen B, Østerhus S (2000) North Atlantic-Nordic Seas exchanges. Prog Oceanogr 45:109–208. doi:10.1016/S0079-6611(99)00052-X

    Article  Google Scholar 

  44. Hansen MO, Nielsen TG, Stedmon CA, Munk P (2012) Oceanographic regime shift during 1997 in Disko Bay, Western Greenland. Limnol Oceanogr 57:634–644

    Article  Google Scholar 

  45. Hanski I (1991) Single-species metapopulation dynamics: concepts, models and observations. In: Metapopulation dynamics: empirical and theoretical investigations. Academic Press, Cambridge, pp 17–38. doi: 10.1016/B978-0-12-284120-0.50005-X

  46. Hátún H, Sandø AB, Drange H, Hansen B, Valdimarsson H (2005) Influence of the Atlantic Subpolar Gyre on the thermohaline circulation. Science 309:1841–1844

    PubMed  Article  CAS  Google Scholar 

  47. Head EJH, Melle W, Pepin P, Bagøien E, Broms C (2013) On the ecology of Calanus finmarchicus in the Subarctic North Atlantic: a comparison of population dynamics and environmental conditions in areas of the Labrador Sea-Labrador/Newfoundland Shelf and Norwegian Sea Atlantic and Coastal Waters. Prog Oceanogr 114:46–63. doi:10.1016/j.pocean.2013.05.004

    Article  Google Scholar 

  48. Heath MR et al (1999) Climate fluctuations and the spring invasion of the North Sea by Calanus finmarchicus. Fish Oceanogr 8:163–176. doi:10.1046/j.1365-2419.1999.00008.x

    Article  Google Scholar 

  49. Heath MR et al (2000) Comparative analysis of Calanus finmarchicus demography at locations around the Northeast Atlantic. ICES J Mar Sci 57:1562–1580. doi:10.1006/jmsc.2000.0950

    Article  Google Scholar 

  50. Helle K, Pennington M (1999) The relation of the spatial distribution of early juvenile cod (Gadus morhua L.) in the Barents Sea to zooplankton density and water flux during the period 1978-1984. ICES J Mar Sci 56:15–27. doi:10.1006/jmsc.1998.0427

    Article  Google Scholar 

  51. Henson SA, Dunne JP, Sarmiento JL (2009) Decadal variability in North Atlantic phytoplankton blooms. J Geophys Res Oceans 114:C04013. doi:10.1029/2008JC005139

    Article  CAS  Google Scholar 

  52. Hirche H-J (1991) Distribution of dominant calanoid copepod species in the Greenland sea during late fall. Polar Biol 11:351–362. doi:10.1007/BF00239687

    Article  Google Scholar 

  53. Hirche H-J (1997) Life cycle of the copepod Calanus hyperboreus in the Greenland Sea. Mar Biol 128:607–618. doi:10.1007/s002270050127

    Article  Google Scholar 

  54. Hirche H-J, Kwasniewski S (1997) Distribution, reproduction and development of Calanus species in the Northeast water in relation to environmental conditions. J Mar Syst 10:299–317. doi:10.1016/S0924-7963(96)00057-7

    Article  Google Scholar 

  55. Hirche H-J, Niehoff B (1996) Reproduction of the Arctic copepod Calanus hyperboreus in the Greenland Sea-field and laboratory observations. Polar Biol 16:209–219. doi:10.1007/BF00392894

    Article  Google Scholar 

  56. Hirche HJ, Hagen W, Mumm N, Richter C (1994) The Northeast Water polynya, Greenland Sea. 3. Meso- and macrozooplankton distribution and production of dominant herbivorous copepods during spring. Polar Biol 14:491–503. doi:10.1007/BF00239054

    Article  Google Scholar 

  57. Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269:676–679. doi:10.1126/science.269.5224.676

    CAS  PubMed  Article  Google Scholar 

  58. Hurrell JW, Deser C (2009) North Atlantic climate variability: the role of the North Atlantic Oscillation. J Mar Syst 78:28–41. doi:10.1016/j.jmarsys.2008.11.026

    Article  Google Scholar 

  59. Hurrell JW, Kushnir Y, Visbeck M (2001) The North Atlantic Oscillation. Science 291:603–605. doi:10.1126/science.1058761

    CAS  PubMed  Article  Google Scholar 

  60. Hygum BH, Rey C, Hansen BW (2000) Growth and development rates of Calanus finmarchicus nauplii during a diatom spring bloom. Mar Biol 136:1075–1085. doi:10.1007/s002270000313

    Article  Google Scholar 

  61. Johns DG, Edwards M, Batten SD (2001) Arctic boreal plankton species in the Northwest Atlantic. Can J Fish Aquat Sci 58:2121–2124. doi:10.1139/f01-156

    Article  Google Scholar 

  62. Jung-Madsen S, Nielsen TG, Grønkjær P, Hansen BW, Møller EF (2013) Early development of Calanus hyperboreus nauplii: response to a changing ocean. Limnol Oceanogr 58:2109–2121. doi:10.4319/lo.2013.58.6.2109

    Article  Google Scholar 

  63. Karnovsky NJ, KwazniewskI S, Weslawski JM, Walkusz W, Beszczynska-möller A (2003) Foraging behavior of little auks in a heterogeneous environment. Mar Ecol Prog Ser 253:289–303. doi:10.3354/meps253289

    Article  Google Scholar 

  64. Karnovsky N et al (2010) Foraging distributions of little auks Alle alle across the Greenland Sea: implications of present and future Arctic climate change. Mar Ecol Prog Ser 415:283–293. doi:10.3354/meps08749

    Article  Google Scholar 

  65. Kendall MG, Gibbons JD (1990) Rank correlation methods. Edward Arnold, London

    Google Scholar 

  66. Kerr RA (1999) A new force in high-latitude climate. Science 284:241–242. doi:10.1126/science.284.5412.241

    CAS  Article  Google Scholar 

  67. Kjellerup S, Dünweber M, Swalethorp R, Nielsen T, Møller EF, Markager S, Hansen BW (2012) Effects of a future warmer ocean on the coexisting copepods Calanus finmarchicus and C. glacialis in Disko Bay, western Greenland. Mar Ecol Prog Ser 447:87–108. doi:10.3354/meps09551

    CAS  Article  Google Scholar 

  68. Koenig WD (2002) Global patterns of environmental synchrony and the Moran effect. Ecography 25:283–288. doi:10.1034/j.1600-0587.2002.250304.x

    Article  Google Scholar 

  69. Kwasniewski S et al (2012) Interannual changes in zooplankton on the West Spitsbergen Shelf in relation to hydrography and their consequences for the diet of planktivorous seabirds. ICES J Mar Sci 69:890–901. doi:10.1093/icesjms/fss076

    Article  Google Scholar 

  70. Kwasniewski S, Walkusz W, Cottier FR, Leu E (2013) Mesozooplankton dynamics in relation to food availability during spring and early summer in a high latitude glaciated fjord (Kongsfjorden), with focus on Calanus. J Mar Syst 111–112:83–96. doi:10.1016/j.jmarsys.2012.09.012

    Article  Google Scholar 

  71. Legendre P, Legendre LF (1998) Numerical ecology. Elsevier, Amsterdam

    Google Scholar 

  72. Levinsen H, Jefferson TT, Nielsen TG, Hansen BW (2000) On the trophic coupling between protists and copepods in arctic marine ecosystems. Mar Ecol Prog Ser 204:65–77

    Article  Google Scholar 

  73. Lindeque PK, Hay SJ, Heath MR, Ingvarsdottir A, Rasmussen J, Smerdon GR, Waniek JJ (2006) Integrating conventional microscopy and molecular analysis to analyse the abundance and distribution of four Calanus congeners in the North Atlantic. J Plankton Res 28:221–238. doi:10.1093/plankt/fbi115

    CAS  Article  Google Scholar 

  74. Loeng H, Drinkwater K (2007) An overview of the ecosystems of the Barents and Norwegian Seas and their response to climate variability. Deep Sea Res Part II 54:2478–2500. doi:10.1016/j.dsr2.2007.08.013

    Article  Google Scholar 

  75. Lohmann K, Drange H, Bentsen M (2008) Response of the North Atlantic subpolar gyre to persistent North Atlantic oscillation like forcing. Clim Dyn 32:273–285. doi:10.1007/s00382-008-0467-6

    Article  Google Scholar 

  76. Mackas DL, Beaugrand G (2010) Comparisons of zooplankton time series. J Mar Syst 79:286–304. doi:10.1016/j.jmarsys.2008.11.030

    Article  Google Scholar 

  77. Maritorena S, Siegel DA (2005) Consistent merging of satellite ocean color data sets using a bio-optical model. Remote Sens Environ 94:429–440. doi:10.1016/j.rse.2004.08.014

    Article  Google Scholar 

  78. Maritorena S, d’Andon OHF, Mangin A, Siegel DA (2010) Merged satellite ocean color data products using a bio-optical model: characteristics, benefits and issues. Remote Sens Environ 114:1791–1804. doi:10.1016/j.rse.2010.04.002

    Article  Google Scholar 

  79. McLaren IA, Corkett CJ (1981) Temperature-dependent growth and production by a marine copepod. Can J Fish Aquat Sci 38:77–83. doi:10.1139/f81-010

    Article  Google Scholar 

  80. Melle W, Skjoldal HR (1998) Reproduction and development of Calanus finmarchicus, C. glacialis and C. hyperboreus in the Barents Sea. Mar Ecol Prog Ser 169:211–228. doi:10.3354/meps169211

    Article  Google Scholar 

  81. Melle W, Ellertsen B, Skjoldal HR (2004) Zooplankton: the link to higher trophic levels. In: Skjoldal HR (ed) The Norwegian Sea ecosystem. Tapir Academic Press, Trondheim, pp 137–202

    Google Scholar 

  82. Melle W et al (2014) The North Atlantic Ocean as habitat for Calanus finmarchicus: environmental factors and life history traits. Prog Oceanogr 129:244–284. doi:10.1016/j.pocean.2014.04.026

    Article  Google Scholar 

  83. Neuheimer AB, Gentleman WC, Galloway CL, Johnson CL (2009) Modeling larval Calanus finmarchicus on Georges Bank: time-varying mortality rates and a cannibalism hypothesis. Fish Oceanogr 18:147–160. doi:10.1111/j.1365-2419.2009.00503.x

    Article  Google Scholar 

  84. Niehoff B, Hirche H-J, Båmstedt U (2000) The reproduction of Calanus finmarchicus in the Norwegian Sea in spring. Sarsia 85:15–22. doi:10.1080/00364827.2000.10414552

    Article  Google Scholar 

  85. Ohman MD, Hirche HJ (2001) Density-dependent mortality in an oceanic copepod population. Nature 412:638–641. doi:10.1038/35088068

    CAS  PubMed  Article  Google Scholar 

  86. Ohman D, Runge JA (1994) Sustained fecundity when phytoplankton resources are in short supply: omnivory by Calanus finmarchicus in the Gulf of St. Lawrence. Limnol Oceanogr 39:21–36. doi:10.4319/lo.1994.39.1.0021

    CAS  Article  Google Scholar 

  87. Ólafsson J (1999) Connections between oceanic conditions off N-Iceland, Lake Myvatn temperature, regional wind direction variability and the North Atlantic Oscillation. Rit Fiskideildar/J Mar Res Inst 16:41–58

    Google Scholar 

  88. Orlova E, Rudneva G, Renaud P, Eiane K, Savinov V, Yurko A (2010) Climate impacts on feeding and condition of capelin Mallotus villosus in the Barents Sea: evidence and mechanisms from a 30 year data set. Aquat Biol 10:105–118. doi:10.3354/ab00265

    Article  Google Scholar 

  89. Østvedt OJ (1955) Zooplankton investigations from the Weather ship M in the Norwegian Sea, 1948-1949. Hvalradets Skr 40:1–93

    Google Scholar 

  90. Ottersen G, Planque B, Belgrano A, Post E, Reid P, Stenseth N (2001) Ecological effects of the North Atlantic Oscillation. Oecologia 128:1–14. doi:10.1007/s004420100655

    PubMed  Article  Google Scholar 

  91. Pasternak A, Arashkevich E, Tande K, Falkenhaug T (2001) Seasonal changes in feeding, gonad development and lipid stores in Calanus finmarchicus and C. hyperboreus from Malangen, northern Norway. Mar Biol 138:1141–1152. doi:10.1007/s002270100553

    Article  Google Scholar 

  92. Perry RI, Batchelder HP, Mackas DL, Chiba S, Durbin E, Greve W, Verheye HM (2004) Identifying global synchronies in marine zooplankton populations: issues and opportunities. ICES J Mar Sci 61:445–456. doi:10.1016/j.icesjms.2004.03.022

    Article  Google Scholar 

  93. Persson J, Stige LC, Stenseth NC, Usov N, Martynova D (2012) Scale-dependent effects of climate on two copepod species, Calanus glacialis and Pseudocalanus minutus, in an Arctic-boreal sea. Mar Ecol Prog Ser 468:71–83. doi:10.3354/meps09944

    Article  Google Scholar 

  94. Planque B, Taylor AH (1998) Long-term changes in zooplankton and the climate of the North Atlantic. ICES J Mar Sci 55:644–654. doi:10.1006/jmsc.1998.0390

    Article  Google Scholar 

  95. Planque B, Hays GC, Ibanez F, Gamble JC (1997) Large scale spatial variations in the seasonal abundance of Calanus finmarchicus. Deep Sea Res Part I 44:315–326. doi:10.1016/S0967-0637(96)00100-8

    Article  Google Scholar 

  96. Plourde S, Joly P, Runge JA, Dodson J, Zakardjian B (2003) Life cycle of Calanus hyperboreus in the lower St. Lawrence Estuary and its relationship to local environmental conditions. Mar Ecol Prog Ser 255:219–233. doi:10.3354/meps255219

    Article  Google Scholar 

  97. Plourde S, Maps F, Joly P (2009) Mortality and survival in early stages control recruitment in Calanus finmarchicus. J Plankton Res 31:371–388. doi:10.1093/plankt/fbn126

    Article  Google Scholar 

  98. R Core Team (2016) R: a language and environment for statistical computing. R foundation for Statistical Computing, Vienna

    Google Scholar 

  99. Richter C (1994) Regional and seasonal variability in the vertical distribution of mesozooplankton in the Greenland Sea. Berichte zur Polarforschung (Reports on Polar Research) 154

  100. Sætre R, Skjoldal HR, Gjertsen K (2004) The Norwegian Sea ecosystem. Tapir Academic Press, Trondheim

    Google Scholar 

  101. Saloranta TM, Haugan PM (2001) Interannual variability in the hydrography of Atlantic water northwest of Svalbard. J Geophys Res Oceans 106:13931–13943. doi:10.1029/2000JC000478

    Article  Google Scholar 

  102. Samuelsen A, Huse G, Hansen C (2009) Shelf recruitment of Calanus finmarchicus off the west coast of Norway: role of physical processes and timing of diapause termination. Mar Ecol Prog Ser 386:163–180. doi:10.3354/meps08060

    Article  Google Scholar 

  103. Siegel DA, Doney SC, Yoder JA (2002) The North Atlantic spring phytoplankton bloom and Sverdrup’s Critical depth hypothesis. Science 296:730–733. doi:10.1126/science.1069174

    CAS  PubMed  Article  Google Scholar 

  104. Skreslet S, Borja A (2003) Interannual correlation between hemispheric climate and northern Norwegian wintering stocks of two Calanus spp. In: ICES Marine Science Symposia, pp 390–392

  105. Skreslet S, Olsen K, Chelak M, Eiane K (2015) NE Atlantic zooplankton wintering in fjord habitats responds to hemispheric climate. J Plankton Res 37:773–789. doi:10.1093/plankt/fbv032

    Article  Google Scholar 

  106. Smith SL, Smith WO, Codispoti LA, Wilson DL (1985) Biological observations in the marginal ice zone of the East Greenland Sea. J Mar Res 43:693–717. doi:10.1357/002224085788440303

    Article  Google Scholar 

  107. Søreide JE, Leu EVA, Berge J, Graeve M, Falk-Petersen S (2010) Timing of blooms, algal food quality and Calanus glacialis reproduction and growth in a changing Arctic. Glob Change Biol 16:3154–3163. doi:10.1111/j.1365-2486.2010.02175.x

    Google Scholar 

  108. Speirs DC, Gurney WS, Heath MR, Horbelt W, Wood SN, De Cuevas BA (2006) Ocean-scale modelling of the distribution, abundance, and seasonal dynamics of the copepod Calanus finmarchicus. Mar Ecol Prog Ser 313:173–192. doi:10.3354/meps313173

    Article  Google Scholar 

  109. Steele M, Ermold W, Zhang J (2008) Arctic Ocean surface warming trends over the past 100 years. Geophys Res Lett 35:L02614. doi:10.1029/2007GL031651

    Article  Google Scholar 

  110. Sundby S (2000) Recruitment of Atlantic cod stocks in relation to temperature and advection of copepod populations. Sarsia 85:277–298. doi:10.1080/00364827.2000.10414580

    Article  Google Scholar 

  111. Tande KS, Miller CB (2000) Population dynamics of Calanus in the North Atlantic: results from the trans-Atlantic study of Calanus finmarchicus. ICES J Mar Sci 57:1527. doi:10.1006/jmsc.2000.0983

    Article  Google Scholar 

  112. Tande KS, Hassel A, Slagstad D (1985) Gonad maturation and possible life cycle strategies in Calanus finmarchicus and Calanus glacialis in the northwestern part of the Barents Sea. In: Marine Biology of Polar Regions and Effects of Stress on Marine Organisms: Proceedings of the 18th European Marine Biology Symposium, University of Oslo, Norway, 14–20 August 1983. Interscience Wiley, pp 141–155

  113. ter Braak CJF, Smilauer P (2012) CANOCO reference manual and user’s guide to canoco for windows: software for ordination (Version 5.0). Centre for Biometry, Wageningen

    Google Scholar 

  114. Thórdardóttir T (1984) Primary production north of Iceland in relation to water masses in May–June 1970–1980. ICES CM 50:20

    Google Scholar 

  115. Turner JT, Borkman DG, Hunt CD (2006) Zooplankton of Massachusetts Bay, USA, 1992-2003: relationships between the copepod Calanus finmarchicus and the North Atlantic Oscillation. Mar Ecol Prog Ser 311:115–124. doi:10.3354/meps311115

    Article  Google Scholar 

  116. UNESCO/SCOR (1996) Determination of photosynthetic pigments in seawater. Monographs in oceanographic methodology, vol 1. UNESCO/SCOR, Paris

    Google Scholar 

  117. Unstad KH, Tande KS (1991) Depth distribution of Calanus finmarchicus and C. glacialis in relation to environmental conditions in the Barents Sea. Polar Res 10:409–420. doi:10.1111/j.1751-8369.1991.tb00662.x

    Article  Google Scholar 

  118. Valdimarsson H, Malmberg S-A (1999) Near-surface circulation in Icelandic waters derived from satellite tracked drifters. Rit Fiskideild 16:23–40

    Google Scholar 

  119. Valdimarsson H, Malmberg S-A (2003) Hydrographic conditions in Icelandic waters, 1990–1999. ICES Mar Sci Symp 219:50–60

    Google Scholar 

  120. Valdimarsson H, Astthorsson OS, Palsson J (2012) Hydrographic variability in Icelandic waters during recent decades and related changes in distribution of some fish species. ICES J Mar Sci 69:816–825. doi:10.1093/icesjms/fss027

    Article  Google Scholar 

  121. Varpe Ø, Fiksen Ø, Slotte A (2005) Meta-ecosystems and biological energy transport from ocean to coast: the ecological importance of herring migration. Oecologia 146:443–451. doi:10.1007/s00442-005-0219-9

    PubMed  Article  Google Scholar 

  122. Varpe Ø, Jørgensen C, Tarling GA, Fiksen Ø (2007) Early is better: seasonal egg fitness and timing of reproduction in a zooplankton life-history model. Oikos 116:1331–1342. doi:10.1111/j.0030-1299.2007.15893.x

    Article  Google Scholar 

  123. Varpe Ø, Jørgensen C, Tarling GA, Fiksen Ø (2009) The adaptive value of energy storage and capital breeding in seasonal environments. Oikos 118:363–370. doi:10.1111/j.1600-0706.2008.17036.x

    Article  Google Scholar 

  124. Villarino E, Chust G, Licandro P, Butenschon M, Ibaibarriaga L, Larranaga A, Irigoien X (2015) Modelling the future biogeography of North Atlantic zooplankton communities in response to climate change. Mar Ecol Prog Ser 531:121–142. doi:10.3354/meps11299

    CAS  Article  Google Scholar 

  125. Visbeck M, Chassignet EP, Curry RG, Delworth TL, Dickson RR, Krahmann G (2013) The Ocean’s response to north atlantic oscillation variability. In: The North Atlantic Oscillation: climatic significance and environmental impact. American Geophysical Union, pp 113–145. doi:10.1029/134GM06

  126. Walczowski W, Piechura J, Goszczko I, Wieczorek P (2012) Changes in Atlantic water properties: an important factor in the European Arctic marine climate. ICES J Mar Sci 69:864–869. doi:10.1093/icesjms/fss068

    Article  Google Scholar 

  127. Wassmann P et al (2006) Food webs and carbon flux in the Barents Sea. Prog Oceanogr 71:232–287. doi:10.1016/j.pocean.2006.10.003

    Article  Google Scholar 

  128. Wassmann P, Duarte CM, AgustÍ S, Sejr MK (2011) Footprints of climate change in the Arctic marine ecosystem. Glob Change Biol 17:1235–1249. doi:10.1111/j.1365-2486.2010.02311

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank M. Daase and A. Wold (Norwegian Polar Institute) and S. Kwasniewski (Institute of Oceanology, Poland) for their help with data collection and analysis. We are also thankful to H. Petursdottir and S. Sigurgeirsdottir (Marine and Freshwater Research Institute, Iceland), who analysed some of the samples from Northern Iceland, and to T. Thangstad (Institute of Marine Research, Norway) for the help with maps of the sampling locations. The study is done with a contribution from the ARCTOS research network.

Funding

The project was funded by the Northern Area Program supported by Conoco Phillips (NSBU-107021) and Lundin Norway (C000353).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marina Espinasse.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Espinasse, M., Halsband, C., Varpe, Ø. et al. The role of local and regional environmental factors for Calanus finmarchicus and C. hyperboreus abundances in the Nordic Seas. Polar Biol 40, 2363–2380 (2017). https://doi.org/10.1007/s00300-017-2150-z

Download citation

Keywords

  • Abundance variation
  • Calanus
  • Climate variability
  • Spatial ecology
  • Sub-Arctic Atlantic