Polar Biology

, Volume 40, Issue 11, pp 2265–2278 | Cite as

Background invertebrate herbivory on dwarf birch (Betula glandulosa-nana complex) increases with temperature and precipitation across the tundra biome

  • Isabel C. Barrio
  • Elin Lindén
  • Mariska Te Beest
  • Johan Olofsson
  • Adrian Rocha
  • Eeva M. Soininen
  • Juha M. Alatalo
  • Tommi Andersson
  • Ashley Asmus
  • Julia Boike
  • Kari Anne Bråthen
  • John P. Bryant
  • Agata Buchwal
  • C. Guillermo Bueno
  • Katherine S. Christie
  • Yulia V. Denisova
  • Dagmar Egelkraut
  • Dorothee Ehrich
  • LeeAnn Fishback
  • Bruce C. Forbes
  • Maite Gartzia
  • Paul Grogan
  • Martin Hallinger
  • Monique M. P. D. Heijmans
  • David S. Hik
  • Annika Hofgaard
  • Milena Holmgren
  • Toke T. Høye
  • Diane C. Huebner
  • Ingibjörg Svala Jónsdóttir
  • Elina Kaarlejärvi
  • Timo Kumpula
  • Cynthia Y. M. J. G. Lange
  • Jelena Lange
  • Esther Lévesque
  • Juul Limpens
  • Marc Macias-Fauria
  • Isla Myers-Smith
  • Erik J. van Nieukerken
  • Signe Normand
  • Eric S. Post
  • Niels Martin Schmidt
  • Judith Sitters
  • Anna Skoracka
  • Alexander Sokolov
  • Natalya Sokolova
  • James D. M. Speed
  • Lorna E. Street
  • Maja K. Sundqvist
  • Otso Suominen
  • Nikita Tananaev
  • Jean-Pierre Tremblay
  • Christine Urbanowicz
  • Sergey A. Uvarov
  • David Watts
  • Martin Wilmking
  • Philip A. Wookey
  • Heike H. Zimmermann
  • Vitali Zverev
  • Mikhail V. Kozlov
Original Paper

Abstract

Chronic, low intensity herbivory by invertebrates, termed background herbivory, has been understudied in tundra, yet its impacts are likely to increase in a warmer Arctic. The magnitude of these changes is however hard to predict as we know little about the drivers of current levels of invertebrate herbivory in tundra. We assessed the intensity of invertebrate herbivory on a common tundra plant, the dwarf birch (Betula glandulosa-nana complex), and investigated its relationship to latitude and climate across the tundra biome. Leaf damage by defoliating, mining and gall-forming invertebrates was measured in samples collected from 192 sites at 56 locations. Our results indicate that invertebrate herbivory is nearly ubiquitous across the tundra biome but occurs at low intensity. On average, invertebrates damaged 11.2% of the leaves and removed 1.4% of total leaf area. The damage was mainly caused by external leaf feeders, and most damaged leaves were only slightly affected (12% leaf area lost). Foliar damage was consistently positively correlated with mid-summer (July) temperature and, to a lesser extent, precipitation in the year of data collection, irrespective of latitude. Our models predict that, on average, foliar losses to invertebrates on dwarf birch are likely to increase by 6–7% over the current levels with a 1 °C increase in summer temperatures. Our results show that invertebrate herbivory on dwarf birch is small in magnitude but given its prevalence and dependence on climatic variables, background invertebrate herbivory should be included in predictions of climate change impacts on tundra ecosystems.

Keywords

Background insect herbivory Climate change Externally feeding defoliators Latitudinal Herbivory Hypothesis Leaf damage Leaf miners Gall makers Macroecological pattern 

Supplementary material

300_2017_2139_MOESM1_ESM.docx (2.4 mb)
Supplementary material 1 (DOCX 2473 kb)

References

  1. Agrawal A, Weber M (2015) On the study of plant defence and herbivory using comparative approaches: how important are secondary plant compounds. Ecol Lett 18:985–991CrossRefPubMedGoogle Scholar
  2. Andrew NR, Hughes L (2005) Herbivore damage along a latitudinal gradient: relative impacts of different feeding guilds. Oikos 108:176–182CrossRefGoogle Scholar
  3. Anstett DN, Naujokaitis-Lewis I, Johnson MTJ (2014) Latitudinal gradients in herbivory on Oenothera biennis vary according to herbivore guild and specialization. Ecology 95:2915–2923CrossRefGoogle Scholar
  4. Anstett D, Ahern J, Glinos J et al (2015) Can genetically based clines in plant defence explain greater herbivory at higher latitudes? Ecol Lett 18:1376–1386CrossRefPubMedGoogle Scholar
  5. Anstett DN, Nunes KA, Baskett C, Kotanen PM (2016) Sources of controversy surrounding latitudinal patterns in herbivory and defense. Trends Ecol Evol 31:789–802CrossRefPubMedGoogle Scholar
  6. Bale JS, Masters GJ, Hodkinson ID et al (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Chang Biol 8:1–16CrossRefGoogle Scholar
  7. Barrio IC, Bueno CG, Hik DS (2016) Warming the tundra: reciprocal responses of invertebrate herbivores and plants. Oikos 125:20–28CrossRefGoogle Scholar
  8. Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48CrossRefGoogle Scholar
  9. Batzli GO, White RG, MacLean SF et al (1980) The herbivore-based ecosystem. In: Brown J, Miller PC, Tieszen LL, Bunnell FL (eds) An arctic ecosystem: the coastal tundra at Barrow. Hutchinson & Ross, Alaska, pp 335–410Google Scholar
  10. Birkemoe T, Bergmann S, Hasle TE, Klanderud K (2016) Experimental warming increases herbivory by leaf-chewing insects in an alpine plant community. Ecol Evol 6:6955–6962CrossRefPubMedPubMedCentralGoogle Scholar
  11. Björkman C, Berggren A, Bylund H (2011) Causes behind insect folivory patterns in latitudinal gradients. J Ecol 99:367–369PubMedPubMedCentralGoogle Scholar
  12. Bret-Harte MS, Shaver GR, Zoerner JP et al (2001) Developmental plasticity allows Betula nana to dominate tundra subjected to an altered environment. Ecology 82:18–32CrossRefGoogle Scholar
  13. Bryant JP, Joly K, Chapin FS et al (2014) Can antibrowsing defense regulate the spread of woody vegetation in arctic tundra? Ecography 37:204–211CrossRefGoogle Scholar
  14. Carmona D, Lajeunesse MJ, Johnson MT (2011) Plant traits that predict resistance to herbivores. Funct Ecol 25:358–367CrossRefGoogle Scholar
  15. Carneiro MAA, Fernandes GW, De Souza OFF (2005) Convergence in the variation of local and regional galling species richness. Neotrop Entomol 34:547–553CrossRefGoogle Scholar
  16. CAVM Team (2003) Circumpolar Arctic Region Bioclimate Subzones. Scale 1:7,500,000Google Scholar
  17. Coley P, Aide T (1991) Comparison of herbivory and plant defenses in temperate and tropical broad-leaved forests. In: Price P, Lewinsohn T, Fernandes G, Benson W (eds) Plant-animal interaction: evolutionary ecology in tropical and temperate regions. Wiley, New York, pp 25–49Google Scholar
  18. Cook BI, Smerdon JE, Seager R, Coats S (2014) Global warming and 21st century drying. Clim Dyn 43:2607–2627CrossRefGoogle Scholar
  19. Danks HV (1986) Insect plant interactions in arctic regions. Rev d’Entomologie du Québec 31:52–75Google Scholar
  20. DeAngelis DL, Bryant JP, Liu R et al (2015) A plant toxin mediated mechanism for the lag in snowshoe hare population recovery following cyclic declines. Oikos 124:796–805CrossRefGoogle Scholar
  21. Elmendorf SC, Henry GHR, Hollister RD et al (2012) Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecol Lett 15:164–175CrossRefPubMedGoogle Scholar
  22. Euskirchen ES, Mcguire AD, Chapin FS et al (2009) Changes in vegetation in Northern Alaska under scenarios of climate change, 2003–2100: implications for climate feedbacks. Ecol Appl 19:1022–1043CrossRefPubMedGoogle Scholar
  23. Feilberg J (1984) A phytogeographical study of South Greenland: vascular plants. Medd Grønland Biosci 15:70Google Scholar
  24. Fisher AE, Hartley S, Young M (1999) Behavioural responses of the leaf-chewing guild to the presence of Eriocrania mines on silver birch (Betula pendula). Ecol Entomol 24:156–162CrossRefGoogle Scholar
  25. Graglia E, Julkunen-Tiitto R, Shaver GR et al (2001) Environmental control and intersite variations of phenolics in Betula nana in tundra ecosystems. New Phytol 151:227–236CrossRefGoogle Scholar
  26. Greyson-Gaito CJ, Barbour MA, Rodriguez-Cabal MA et al (2016) Freedom to move: arctic caterpillar (Lepidoptera) growth rate increases with access to new willows (Salicaceae). Can Entomol 148:673–682CrossRefGoogle Scholar
  27. Haukioja E (1981) Invertebrate herbivory at tundra sites. In: Bliss LC, Heal OW, Moore JJ (eds) Tundra ecosystems: a comparative analysis. Cambridge University Press, New York, pp 547–555Google Scholar
  28. Hiura T, Nakamura M (2013) Different mechanisms explain feeding type-specific patterns of latitudinal variation in herbivore damage among diverse feeding types of herbivorous insects. Basic Appl Ecol 14:480–488CrossRefGoogle Scholar
  29. Hodkinson ID, Bird J (1998) Host-specific insect herbivores as sensors of climate change in Arctic and alpine environments. Arct Alp Res 30:78–83CrossRefGoogle Scholar
  30. IPCC [Intergovernmental Panel on Climate Change] (2013) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  31. Jepsen JU, Hagen SB, Ims RA, Yoccoz NG (2008) Climate change and outbreaks of the geometrids Operophtera brumata and Epirrita autumnata in subarctic birch forest: evidence of a recent outbreak range expansion. J Anim Ecol 77:257–264CrossRefPubMedGoogle Scholar
  32. Jepsen JU, Biuw M, Ims RA et al (2013) Ecosystem impacts of a range expanding forest defoliator at the forest-tundra ecostone. Ecosystems 16:561–575CrossRefGoogle Scholar
  33. Johnson MTJ, Rasmann S (2011) The latitudinal herbivory-defence hypothesis takes a detour on the map. New Phytol 191:589–592CrossRefPubMedGoogle Scholar
  34. Kaukonen M, Ruotsalainen AL, Wali P et al (2013) Moth herbivory enhances resource turnover in subarctic mountain birch forests? Ecology 94:267–272CrossRefPubMedGoogle Scholar
  35. Koponen S (1984) Abundance of herbivorous insects on dwarf birch near the treeline in Alaska. Rep Kevo Subarct Res Stn 19:19–24Google Scholar
  36. Kotanen PM, Rosenthal JP (2000) Tolerating herbivory: does the plant care if the herbivore has a backbone? Evol Ecol 14:537–549CrossRefGoogle Scholar
  37. Kozlov MV (2008) Losses of birch foliage due to insect herbivory along geographical gradients in Europe: a climate-driven pattern? Clim Change 87:107–117CrossRefGoogle Scholar
  38. Kozlov MV, Zvereva EL (2017) Background insect herbivory: impacts, patterns and methodology. In: Cánovas FM, Lüttge U, Matyssek R (eds) Progress in Botany, vol 79. Springer, Heidelberg. doi:10.1007/124_2017_4 Google Scholar
  39. Kozlov MV, van Nieukerken EJ, Zverev V, Zvereva EL (2013) Abundance and diversity of birch-feeding leafminers along latitudinal gradients in northern Europe. Ecography 36:1138–1149CrossRefGoogle Scholar
  40. Kozlov MV, Lanta V, Zverev V, Zvereva EL (2015a) Global patterns in background losses of woody plant foliage to insects. Glob Ecol Biogeogr 24:1126–1135CrossRefGoogle Scholar
  41. Kozlov MV, Filippov BY, Zubrij NA, Zverev V (2015b) Abrupt changes in invertebrate herbivory on woody plants at the forest-tundra ecotone. Polar Biol 38:967–974CrossRefGoogle Scholar
  42. Kozlov MVM, Skoracka A, Zverev V et al (2016) Two birch species demonstrate opposite latitudinal patterns in infestation by gall-making mites in Northern Europe. PLoS ONE 11:e0166641CrossRefPubMedPubMedCentralGoogle Scholar
  43. Lawrimore JH, Menne MJ, Gleason BE et al (2011) An overview of the global historical climatology network monthly mean temperature data set, version 3. J Geophys Res 116:D19121CrossRefGoogle Scholar
  44. Leckey EH, Smith DM, Nufio CR, Fornash KF (2014) Oak-insect herbivore interactions along a temperature and precipitation gradient. Acta Oecologica 61:1–8CrossRefGoogle Scholar
  45. Lim JY, Fine PVA, Mittelbach GG (2015) Assessing the latitudinal gradient in herbivory. Glob Ecol Biogeogr 24(10):1–7CrossRefGoogle Scholar
  46. Metcalfe DB, Crutsinger GM, Kumordzi BB, Wardle DA (2016) Nutrient fluxes from insect herbivory increase during ecosystem retrogression in boreal forest. Ecology 97:124–132CrossRefPubMedGoogle Scholar
  47. Moles AT, Bonser SP, Poore AGB et al (2011) Assessing the evidence for latitudinal gradients in plant defence and herbivory. Funct Ecol 25:380–388CrossRefGoogle Scholar
  48. Moreira X, Abdala-Roberts L, Parra-Tabla V, Mooney KA (2015) Latitudinal variation in herbivory: influences of climatic drivers, herbivore identity and natural enemies. Oikos 124:1444–1452CrossRefGoogle Scholar
  49. Myers-Smith IH, Forbes BC, Wilmking M et al (2011) Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ Res Lett 6:45509CrossRefGoogle Scholar
  50. Myers-Smith IH, Elmendorf SC, Beck PSA et al (2015) Climate sensitivity of shrub growth across the tundra biome. Nat Clim Chang 5:887–891CrossRefGoogle Scholar
  51. Nykänen H, Koricheva J (2004) Damage-induced changes in woody plants and their effects on insect herbivore performance: a meta-analysis. Oikos 104:247–268CrossRefGoogle Scholar
  52. Olofsson J, te Beest M, Ericson L (2013) Complex biotic interactions drive long-term vegetation dynamics in a subarctic ecosystem. Philos Trans R Soc Lond B 368:20120486CrossRefGoogle Scholar
  53. Onoda Y, Westoby M, Adler PB et al (2011) Global patterns of leaf mechanical properties. Ecol Lett 14:301–312CrossRefPubMedGoogle Scholar
  54. Parker TC, Sadowsky J, Dunleavy H et al (2017) Slowed biogeochemical cycling in sub-arctic birch forest linked to reduced mycorrhizal growth and community change after a defoliation event. Ecosystems 20:316–330CrossRefGoogle Scholar
  55. Pennings SC, Ho C, Salgado CS et al (2009) Latitudinal variation in herbivore pressure in Atlantic coast salt marshes. Ecology 90:183–195CrossRefPubMedGoogle Scholar
  56. Post E, Pedersen C (2008) Opposing plant community responses to warming with and without herbivores. Proc Natl Acad Sci USA 105:12353–12358CrossRefPubMedPubMedCentralGoogle Scholar
  57. Prevéy J, Vellend M, Rüger N et al (2017) Greater temperature sensitivity of plant phenology at colder sites: implications for convergence across northern latitudes. Glob Chang Biol. doi:10.1111/gcb.13619 PubMedGoogle Scholar
  58. R Development Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
  59. Richardson SJ, Press MC, Parsons AN, Hartley SE (2002) How do nutrients and warming impact on plant communities and their insect herbivores? A 9 year study from a sub-Arctic heath. J Ecol 90:544–556CrossRefGoogle Scholar
  60. Roy BA, Gusewell S, Harte J (2004) Response of plant pathogens and herbivores to a warming experiment. Ecology 85:2570–2581CrossRefGoogle Scholar
  61. Sinclair RJ, Hughes L (2008) Incidence of leaf mining in different vegetation types across rainfall, canopy cover and latitudinal gradients. Austral Ecol 33:353–360CrossRefGoogle Scholar
  62. Speed JD, Austrheim G, Hester AJ, Mysterud A (2011) Browsing interacts with climate to determine tree-ring increment. Funct Ecol 25:1018–1023CrossRefGoogle Scholar
  63. Speed JDM, Austrheim G, Hester AJ, Mysterud A (2013) The response of alpine Salix shrubs to long-term browsing varies with elevation and herbivore density. Arctic, Antarct Alp Res 45:584–593CrossRefGoogle Scholar
  64. Stark S, Väisänen M, Ylänne H et al (2015) Decreased phenolic defence in dwarf birch (Betula nana) after warming in subarctic tundra. Polar Biol 38:1993–2005CrossRefGoogle Scholar
  65. Torp M, Witzell J, Baxter R, Olofsson J (2010) The effect of snow on plant chemistry and invertebrate herbivory: experimental manipulations along a natural snow gradient. Ecosystems 13:741–751CrossRefGoogle Scholar
  66. Viramo J (1962) Über die an der Zwergbirke (Betula nana L.) minierenden Insektenarten. Ann Entomol Fenn 28:118–126Google Scholar
  67. Wilf P, Labandeira CC (1999) Response of plant-insect associations to Paleocene–Eocene warming. Science 284:2153–2156CrossRefPubMedGoogle Scholar
  68. Wilf P, Labandeira CC, Johnson KR et al (2001) Insect herbivory, plant defense and early Cenozoic climate change. Proc Natl Acad Sci 98:6221–6226CrossRefPubMedPubMedCentralGoogle Scholar
  69. Wolf A, Kozlov MV, Callaghan TV (2008) Impact of non-outbreak insect damage on vegetation in northern Europe will be greater than expected during a changing climate. Clim Chang 87:91–106CrossRefGoogle Scholar
  70. Zhang S, Zhang Y, Ma K, Shefferson R (2016) Latitudinal variation in herbivory: hemispheric asymmetries and the role of climatic drivers. J Ecol 104:1089–1095CrossRefGoogle Scholar
  71. Zuur AF, Ieno EN, Walker NJ et al (2009) Mixed effects models and extensions in ecology with R. Springer, New YorkCrossRefGoogle Scholar
  72. Zvereva EL, Zverev V, Kozlov MV (2012) Little strokes fell great oaks: minor but chronic herbivory substantially reduces birch growth. Oikos 121:2036–2043CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Isabel C. Barrio
    • 1
  • Elin Lindén
    • 2
  • Mariska Te Beest
    • 2
  • Johan Olofsson
    • 2
  • Adrian Rocha
    • 3
  • Eeva M. Soininen
    • 4
  • Juha M. Alatalo
    • 5
  • Tommi Andersson
    • 6
  • Ashley Asmus
    • 7
  • Julia Boike
    • 8
  • Kari Anne Bråthen
    • 4
  • John P. Bryant
    • 9
  • Agata Buchwal
    • 10
    • 11
  • C. Guillermo Bueno
    • 12
  • Katherine S. Christie
    • 13
  • Yulia V. Denisova
    • 14
  • Dagmar Egelkraut
    • 2
  • Dorothee Ehrich
    • 4
  • LeeAnn Fishback
    • 15
  • Bruce C. Forbes
    • 16
  • Maite Gartzia
    • 17
  • Paul Grogan
    • 18
  • Martin Hallinger
    • 19
  • Monique M. P. D. Heijmans
    • 20
  • David S. Hik
    • 21
  • Annika Hofgaard
    • 22
  • Milena Holmgren
    • 23
  • Toke T. Høye
    • 24
  • Diane C. Huebner
    • 25
  • Ingibjörg Svala Jónsdóttir
    • 1
    • 26
  • Elina Kaarlejärvi
    • 2
    • 27
  • Timo Kumpula
    • 28
  • Cynthia Y. M. J. G. Lange
    • 29
  • Jelena Lange
    • 30
  • Esther Lévesque
    • 31
  • Juul Limpens
    • 20
  • Marc Macias-Fauria
    • 32
  • Isla Myers-Smith
    • 33
  • Erik J. van Nieukerken
    • 34
  • Signe Normand
    • 35
  • Eric S. Post
    • 36
  • Niels Martin Schmidt
    • 37
  • Judith Sitters
    • 2
    • 27
  • Anna Skoracka
    • 38
  • Alexander Sokolov
    • 39
    • 40
  • Natalya Sokolova
    • 39
    • 40
  • James D. M. Speed
    • 41
  • Lorna E. Street
    • 42
  • Maja K. Sundqvist
    • 2
    • 43
  • Otso Suominen
    • 6
  • Nikita Tananaev
    • 44
  • Jean-Pierre Tremblay
    • 45
  • Christine Urbanowicz
    • 46
  • Sergey A. Uvarov
    • 47
  • David Watts
    • 48
  • Martin Wilmking
    • 30
  • Philip A. Wookey
    • 41
  • Heike H. Zimmermann
    • 8
  • Vitali Zverev
    • 49
  • Mikhail V. Kozlov
    • 49
  1. 1.Department of Life and Environmental SciencesUniversity of IcelandReykjavíkIceland
  2. 2.Department of Ecology and Environmental ScienceUmeå UniversityUmeåSweden
  3. 3.Department of Biological Sciences and the Environmental Change InitiativeUniversity of Notre DameNotre DameUSA
  4. 4.Department of Arctic and Marine BiologyUiT, The Arctic University of NorwayTromsøNorway
  5. 5.Department of Biological and Environmental Sciences, College of Arts and SciencesQatar UniversityDohaQatar
  6. 6.Biodiversity Unit, Kevo Subarctic Research InstituteUniversity of TurkuTurkuFinland
  7. 7.Department of BiologyThe University of Texas at ArlingtonArlingonUSA
  8. 8.Alfred Wegener Institute for Polar and Marine ResearchPotsdamGermany
  9. 9.Institute of Arctic BiologyUniversity of Alaska FairbanksFairbanksUSA
  10. 10.Institute of Geoecology and GeoinformationAdam Mickiewicz UniversityPoznanPoland
  11. 11.Department of Biological SciencesUniversity of Alaska AnchorageAnchorageUSA
  12. 12.Institute of Ecology and Earth Sciences, Department of BotanyUniversity of TartuTartuEstonia
  13. 13.Science DepartmentAlaska SeaLife CenterSewardUSA
  14. 14.Nenets Agrarian-Economic Technical SchoolNaryan-MarRussia
  15. 15.Churchill Northern Studies CentreChurchillCanada
  16. 16.Arctic CentreUniversity of LaplandRovaniemiFinland
  17. 17.Pyrenean Institute of Ecology (CSIC)JacaSpain
  18. 18.Department of BiologyQueen’s UniversityKingstonCanada
  19. 19.Swedish Agricultural UniversityUppsalaSweden
  20. 20.Plant Ecology and Nature Conservation GroupWageningen University & ResearchWageningenThe Netherlands
  21. 21.Department of Biological SciencesUniversity of AlbertaEdmontonCanada
  22. 22.Norwegian Institute for Nature ResearchTrondheimNorway
  23. 23.Resource Ecology GroupWageningen University & ResearchWageningenThe Netherlands
  24. 24.Arctic Research Centre and Department of BioscienceAarhus UniversityRøndeDenmark
  25. 25.Department of Biology & WildlifeUniversity of Alaska FairbanksFairbanksUSA
  26. 26.University Centre in Svalbard (UNIS)LongyearbyenNorway
  27. 27.Department of BiologyVrije Universiteit Brussel (VUB)BrusselsBelgium
  28. 28.Department of Geographical and Historical StudiesUniversity of Eastern FinlandJoensuuFinland
  29. 29.Department of Animal EcologyNetherlands Institute of Ecology (NIOO-KNAW)WageningenThe Netherlands
  30. 30.Institute of Botany and Landscape EcologyUniversity GreifswaldGreifswaldGermany
  31. 31.Université du Québec à Trois-Rivières and Centre d‘études nordiquesTrois-RivièresCanada
  32. 32.School of Geography & the EnvironmentUniversity of OxfordOxfordUK
  33. 33.School of GeoSciences, King’s BuildingsUniversity of EdinburghEdinburghUK
  34. 34.Naturalis Biodiversity CenterLeidenThe Netherlands
  35. 35.Section for Ecoinformatics and Biodiversity, Department of BioscienceAarhus UniversityAarhus CDenmark
  36. 36.Department of Wildlife, Fish and Conservation BiologyUniversity of CaliforniaDavisUSA
  37. 37.Arctic Research Centre, Department of BioscienceAarhus UniversityRoskildeDenmark
  38. 38.Population Ecology Lab, Institute of Environmental Biology, Faculty of BiologyAdam Mickiewicz University in PoznańPoznańPoland
  39. 39.Arctic Research Station, Institute of Plant and Animal EcologyUral Branch of Russian Academy of SciencesLabytnangiRussia
  40. 40.Arctic Research Center of the Yamal-Nenets Autonomous DistrictSalekhardRussia
  41. 41.Department of Natural History, NTNU University MuseumNorwegian University of Science and TechnologyTrondheimNorway
  42. 42.Environmental Sciences, School of Life SciencesHeriot-Watt UniversityEdinburghUK
  43. 43.The Center for Macroecology, Evolution and Climate, The Natural History Museum of DenmarkUniversity of CopenhagenCopenhagen ØDenmark
  44. 44.Melnikov Permafrost Institute, Siberian BranchRussian Academy of SciencesYakutskRussia
  45. 45.Department of Biology, Centre for Nordic Studies and Centre for Forest ResearchUniversité LavalQuébecCanada
  46. 46.Department of Biological SciencesDartmouth CollegeHanoverUSA
  47. 47.Nenets Museum of Local HistoryNaryan-MarRussia
  48. 48.Intercollege Graduate Degree Program in Ecology, Department of BiologyThe Pennsylvania State UniversityUniversity ParkUSA
  49. 49.Section of Ecology, Department of BiologyUniversity of TurkuTurkuFinland

Personalised recommendations