Polar Biology

, Volume 40, Issue 10, pp 2015–2025 | Cite as

Sources and distribution of biomarkers in surficial sediments from a polar marine ecosystem (Potter Cove, King George Island, Antarctica)

  • Ana Lúcia L. DaunerEmail author
  • Walter P. MacCormack
  • Edgardo A. Hernández
  • César C. MartinsEmail author
Original Paper


Sedimentary organic matter (OM) represents the energy supply for the shelf benthos at the Antarctic Ocean, and has yet to be properly characterized in terms of sources and composition for the Potter Cove region, King George/25 de Mayo Island. This energy input occurs mainly during the brief summer and provides the majority of available energy for the year, in a region with high endemism and limited source variety of sedimentary OM. Thus, the aim of this study is to identify the OM origin and degradation degree based on the spatial distribution and type of organic biomarkers. Twelve surficial sediment samples were collected and analyzed for the presence of n-alkanols and sterols. The different spatial patterns between the analyzed compounds indicated distinct OM sources and degradation degrees. First, relatively fresh phytoplankton organic matter and an enhanced bacterial activity were associated with the occurrence of seaweeds detritus and represent the source of n-alkanols. Second, relatively fresh material mainly associated with seaweeds debris were identified as the source of macroalgae sterols. Our results shed some light into the base of the Potter Cove trophic benthic chain and increase our understanding on the region’s biogeochemical processes relating to OM recycling. It also provides a baseline for assessing future changes in the structure of the benthic food web in this environment, which is subject to noticeable glaciers retreat.


n-Alkanols Sterols Organic matter Antarctica 



A.L.L. Dauner is thankful to CNPq (121444/2010-4) for the B.Sc. scholarship, to CAPES (Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior) for the M.Sc. scholarship and to Mihael Machado de Souza for the English revision. C.C. Martins is grateful to CNPq (National Council for Scientific and Technological Development) for the Research Grant (305763/2011-3). This study is related to the Brazilian “National Science and Technology Institute on Antarctic Environmental Research” (INCT-APA, FAPERJ E-16/170023/2008). W.P. Mac Cormack and E.A. Hernández thanks the financial support from the European Commission through the Marie Curie Action IRSES, project no 318718, IMCONet (Interdisciplinary Modelling of climate change in coastal Western Antarctica—Network for staff Exchange and Training) also to the grants PICTO 2010-0124 from the ANPCyT (Agencia Nacional de Promoción Científica y Tecnológica) and the UBA (Universidad de Buenos Aires CyT 20020100100378).

Supplementary material

300_2017_2120_MOESM1_ESM.docx (38 kb)
Supplementary material 1 (DOCX 37 KB)


  1. Abreu-Mota MA, Barboza CA de M, Bícego MC, Martins CC (2014) Sedimentary biomarkers along a contamination gradient in a human-impacted sub-estuary in Southern Brazil: a multi-parameter approach based on spatial and seasonal variability. Chemosphere 103:156–163. doi: 10.1016/j.chemosphere.2013.11.052 CrossRefPubMedGoogle Scholar
  2. Andersson RA, Meyers PA (2012) Effect of climate change on delivery and degradation of lipid biomarkers in a Holocene peat sequence in the Eastern European Russian Arctic. Org Geochem 53:63–72. doi: 10.1016/j.orggeochem.2012.05.002 CrossRefGoogle Scholar
  3. Andrade PB, Barbosa M, Matos RP et al (2013) Valuable compounds in macroalgae extracts. Food Chem 138:1819–1828. doi: 10.1016/j.foodchem.2012.11.081 CrossRefPubMedGoogle Scholar
  4. Aronson RB, Thatje S, McClintock JB, Hughes KA (2011) Anthropogenic impacts on marine ecosystems in Antarctica. Ann N Y Acad Sci 1223:82–107. doi: 10.1111/j.1749-6632.2010.05926.x CrossRefPubMedGoogle Scholar
  5. Atencio AG, Bertolin ML, Longhi L et al (2008) Spatial and temporal variability of chlorophyll-a and particulate organic matter in the sediments and the water column of Potter Cove (Antarctica). In: Wiencke C, Ferreyra GA, Abele D, Marenssi S (eds) The Antarctic Ecosystem of Potter Cove, King-George Island (1999–2006). Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, pp 154–161Google Scholar
  6. Bechtel A, Schubert CJ (2009) Biogeochemistry of particulate organic matter from lakes of different trophic levels in Switzerland. Org Geochem 40:441–454. doi: 10.1016/j.orggeochem.2009.01.011 CrossRefGoogle Scholar
  7. Bianchi TS (2007) Biogeochemistry of estuaries, 1st edn. Oxford University Press, Inc, New YorkGoogle Scholar
  8. Burns KA, Brinkman D (2011) Organic biomarkers to describe the major carbon inputs and cycling of organic matter in the central Great Barrier Reef region. Estuar Coast Shelf Sci 93:132–141. doi: 10.1016/j.ecss.2011.04.001 CrossRefGoogle Scholar
  9. Burns KA, Hernes PJ, Brinkman D et al (2008) Dispersion and cycling of organic matter from the Sepik River outflow to the Papua New Guinea coast as determined from biomarkers. Org Geochem 39:1747–1764. doi: 10.1016/j.orggeochem.2008.08.003 CrossRefGoogle Scholar
  10. Carreira RS, Ribeiro P V., Silva CEM, Farias CO (2009) Hidrocarbonetos e esterois como indicadores de fontes e destino de matéria orgânica em sedimentos da baía de sepetiba, rio de janeiro. Química Nova 32:1805–1811. doi: 10.1590/S0100-40422009000700023 CrossRefGoogle Scholar
  11. Costa TLF, Araújo MP, Knoppers BA, Carreira RS (2010) Sources and distribution of particulate organic matter of a tropical Estuarine-Lagoon System from NE Brazil as indicated by lipid biomarkers. Aquat Geochem 17:1–19. doi: 10.1007/s10498-010-9104-1 CrossRefGoogle Scholar
  12. Curtosi A, Pelletier E, Vodopivez CL, Mac Cormack WP (2007) Polycyclic aromatic hydrocarbons in soil and surface marine sediment near Jubany Station (Antarctica). Role of permafrost as a low-permeability barrier. Sci Total Environ 383:193–204. doi: 10.1016/j.scitotenv.2007.04.025 CrossRefPubMedGoogle Scholar
  13. Curtosi A, Pelletier E, Vodopivez CL, Mac Cormack WP (2009) Distribution of PAHs in the water column, sediments and biota of Potter Cove, South Shetland Islands, Antarctica. Antarct Sci 21:329–339. doi: 10.1017/S0954102009002004 CrossRefGoogle Scholar
  14. Dauner ALL, Hernández EA, Mac Cormack WP, Martins CC (2015) Molecular characterisation of anthropogenic sources of sedimentary organic matter from Potter Cove, King George Island, Antarctica. Sci Total Environ 502:408–416. doi: 10.1016/j.scitotenv.2014.09.043 CrossRefPubMedGoogle Scholar
  15. Ducklow HW, Baker K, Martinson DG et al (2007) Marine pelagic ecosystems: the West Antarctic Peninsula. Philos Trans R Soc B Biol Sci 362:67–94. doi: 10.1098/rstb.2006.1955 CrossRefGoogle Scholar
  16. Faux JF, Belicka LL, Rodger Harvey H (2011) Organic sources and carbon sequestration in Holocene shelf sediments from the western Arctic Ocean. Cont Shelf Res 31:1169–1179. doi: 10.1016/j.csr.2011.04.001 CrossRefGoogle Scholar
  17. Fuentes VL, Schnack-Schiel SB, Schloss IR, Esnal GG (2008) Mesozooplankton of Potter Cove: community composition and seasonal distribution in 2002 and 2003. In: Wiencke C, Ferreyra GA, Abele D, Marenssi S (eds) The Antarctic Ecosystem of Potter Cove, King-George Island (1999–2006). Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, pp 75–84Google Scholar
  18. Graeve M, Sahade R, Fuentes VL et al (2008) Bentho-pelagic coupling at Potter Cove, Antarctica: a fatty acid approach. In: Wiencke C, Ferreyra GA, Abele D, Marenssi S (eds) The Antarctic Ecosystem of Potter Cove, King-George Island (1999–2006). Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, pp 147–153Google Scholar
  19. Greene SW, Gressitt JL, Koob D et al (1967) Terrestrial life of Antarctic. In: Bushnell VC (ed) Antarctic map folio series. American Geographical Society, New YorkGoogle Scholar
  20. Holland AR, Petsch ST, Castañeda IS et al (2013) A biomarker record of Lake El’gygytgyn, Far East Russian Arctic: investigating sources of organic matter and carbon cycling during marine isotope stages 1–3. Clim Past 9:243–260. doi: 10.5194/cp-9-243-2013 CrossRefGoogle Scholar
  21. Hu J, Peng P, Chivas AR (2009) Molecular biomarker evidence of origins and transport of organic matter in sediments of the Pearl River estuary and adjacent South China Sea. Appl Geochem 24:1666–1676. doi: 10.1016/j.apgeochem.2009.04.035 CrossRefGoogle Scholar
  22. Huang J, Sun L, Wang X et al (2011) Ecosystem evolution of seal colony and the influencing factors in the 20th century on Fildes Peninsula, West Antarctica. J Environ Sci 23:1431–1436. doi: 10.1016/S1001-0742(10)60601-8 CrossRefGoogle Scholar
  23. Hudson ED, Parrish CC, Helleur RJ (2001) Biogeochemistry of sterols in plankton, settling particles and recent sediments in a cold ocean ecosystem (Trinity Bay, Newfoundland). Mar Chem 76:253–270CrossRefGoogle Scholar
  24. Jeng W-L, Han B (1994) Sedimentary coprostanol in Kaohsiung Harbour and the Tan-Shui Estuary, Taiwan. Mar Pollut Bull 28:494–499CrossRefGoogle Scholar
  25. Jeng W-L, Huh C-A (2004) Lipids in suspended matter and sediments from the East China Sea Shelf. Org Geochem 35:647–660. doi: 10.1016/j.orggeochem.2003.12.002 CrossRefGoogle Scholar
  26. Kim JH, Ahn I-Y, Hong SG et al (2006) Lichen flora around the Korean Antarctic Scientific Station, King George Island, Antarctic. J Microbiol 44:480–491PubMedGoogle Scholar
  27. Kim JH, Ahn I-Y, Lee KS et al (2007) Vegetation of Barton Peninsula in the neighbourhood of King Sejong Station (King George Island, maritime Antarctic). Polar Biol 30:903–916. doi: 10.1007/s00300-006-0250-2 CrossRefGoogle Scholar
  28. Klöser H, Ferreyra GA, Schloss IR et al (1994) Hydrography of Potter Cove, a small fjord-like inlet on King George Island (South Shetlands). Estuar Coast Shelf Sci 38:523–537CrossRefGoogle Scholar
  29. Laureillard J, Saliot A (1993) Biomarkers in organic matter produced in estuaries: a case study of the Krka estuary (Adriatic Sea) using the sterol marker series. Mar Chem 43:247–261CrossRefGoogle Scholar
  30. Lopes G, Sousa C, Bernardo J et al (2011) Sterol profiles in 18 macroalgae of the Portuguese coast. J Phycol 47:1210–1218. doi: 10.1111/j.1529-8817.2011.01028.x CrossRefPubMedGoogle Scholar
  31. Martins CC, Venkatesan MI, Montone RC (2002) Sterols and linear alkylbenzenes in marine sediments from Admiralty Bay, King George Island, South Shetland Islands. Antarct Sci 14:244–252. doi: 10.1017/S0954102002000093 CrossRefGoogle Scholar
  32. Martins CC, Seyffert BH, Braun JAF, Fillmann G (2011) Input of organic matter in a large south american tropical estuary (Paranaguá Estuarine System, Brazil) indicated by sedimentary sterols and multivariate statistical approach. J Braz Chem Soc 22:1585–1594CrossRefGoogle Scholar
  33. Martins CC, Bícego MC, Figueira RCL et al (2012) Multi-molecular markers and metals as tracers of organic matter inputs and contamination status from an Environmental Protection Area in the SW Atlantic (Laranjeiras Bay, Brazil). Sci Total Environ 417–418:158–168. doi: 10.1016/j.scitotenv.2011.11.086 CrossRefPubMedGoogle Scholar
  34. Martins CC, Aguiar SN, Wisnieski E et al (2014a) Baseline concentrations of faecal sterols and assessment of sewage input into different inlets of Admiralty Bay, King George Island, Antarctica. Mar Pollut Bull 78:218–223. doi: 10.1016/j.marpolbul.2013.10.034 CrossRefPubMedGoogle Scholar
  35. Martins CC, Cabral AC, Barbosa-Cintra SCT et al (2014b) An integrated evaluation of molecular marker indices and linear alkylbenzenes (LABs) to measure sewage input in a subtropical estuary (Babitonga Bay, Brazil). Environ Pollut 188:71–80. doi: 10.1016/j.envpol.2014.01.022 CrossRefPubMedGoogle Scholar
  36. Mater L, Alexandre MR, Hansel FA, Madureira LAS (2004) Assessment of lipid compounds and phosphorus in mangrove sediments of Santa Catarina Island, SC, Brazil. J Braz Chem Soc 15:725–734CrossRefGoogle Scholar
  37. Mayer M (2000) Zur Okologie der Benthos-Foraminiferen der Potter Cove (King George Island, Antarktis). Berichte zur Polar und Meeresforsch 353:1–140Google Scholar
  38. Méjanelle L, Laureillard J (2008) Lipid biomarker record in surface sediments at three sites of contrasting productivity in the tropical North Eastern Atlantic. Mar Chem 108:59–76. doi: 10.1016/j.marchem.2007.10.002 CrossRefGoogle Scholar
  39. Momo FR, Sahade R, Tatián M (2008) Benthic animal communities of Potter Cove (King George Island, Antarctica): Observed patterns and explanatory models. In: Wiencke C, Ferreyra GA, Abele D, Marenssi S (eds) The Antarctic Ecosystem of Potter Cove, King-George Island (1999–2006). Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, pp 162–167Google Scholar
  40. Monien P, Lettmann KA, Monien D et al (2014) Redox conditions and trace metal cycling in coastal sediments from the maritime Antarctic. Geochim Cosmochim Acta 141:26–44. doi: 10.1016/j.gca.2014.06.003 CrossRefGoogle Scholar
  41. Nanni AS, Descovi-Filho L, Virtuoso MA et al (2012) Quantum GIS—Guia do Usuário, Versão 1.7.4 ‘Wroclaw’Google Scholar
  42. Park JS, Ahn I-Y, Lee EJ (2014) Spatial distribution patterns of the antarctic hair grass Deschampsia antarctica in relation to environmental variables on Barton Peninsula, King George Island. Arct Antarct Alp Res 45:563–574. doi: 10.1657/1938-4246-45.4.563 CrossRefGoogle Scholar
  43. Pasotti F, Manini E, Giovannelli D et al (2015) Antarctic shallow water benthos in an area of recent rapid glacier retreat. Mar Ecol 36:716–733. doi: 10.1111/maec.12179 CrossRefGoogle Scholar
  44. Patterson GW (1971) The distribution of sterols in algae. Lipids 6:120–127CrossRefGoogle Scholar
  45. Quartino ML, Zaixso ALB (2008) Summer macroalgal biomass in Potter Cove, South Shetland Islands, Antarctica: its production and flux to the ecosystem. Polar Biol 31:281–294. doi: 10.1007/s00300-007-0356-1 CrossRefGoogle Scholar
  46. R Core Team (2013) R: a language and environment for statistical computingGoogle Scholar
  47. Roese M, Drabble M (1998) Wind-driven circulation in Potter Cove. Berichte zur Polar und Meeresforsch 299:40–46Google Scholar
  48. Rontani J-F, Belt ST, Vaultier F et al (2014) Autoxidative and photooxidative reactivity of highly branched isoprenoid (HBI) alkenes. Lipids. doi: 10.1007/s11745-014-3891-x PubMedGoogle Scholar
  49. Sahade R, Tarantelli S, Tatián M, Mercuri G (2008) Benthic community shifts: A possible linkage to climate change? In: Wiencke C, Ferreyra GA, Abele D, Marenssi S (eds) The Antarctic Ecosystem of Potter Cove, King-George Island (1999–2006). Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, pp 331–337Google Scholar
  50. Schloss IR, Ferreyra GA (2002) Primary production, light and vertical mixing in Potter Cove, a shallow bay in the maritime Antarctic. Polar Biol 25:41–48. doi: 10.1007/s003000100309 CrossRefGoogle Scholar
  51. Schloss IR, Ferreyra GA, Ruiz-Pino D (2002) Phytoplankton biomass in Antarctic shelf zones: a conceptual model based on Potter Cove, King George Island. J Mar Syst 36:129–143. doi: 10.1016/S0924-7963(02)00183-5 CrossRefGoogle Scholar
  52. Schulz F, Winkler JB, Kappen L (1998) Components of terrestrial vegetation, pattern and processes. In: Wiencke C, Ferreyra GA, Arntz W, Rinaldi C (eds) The Potter Cove coastal ecosystem, Antarctica. Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, pp 54–58Google Scholar
  53. Shi W, Sun M-Y, Molina M, Hodson RE (2001) Variability in the distribution of lipid biomarkers and their molecular isotopic composition in Altamaha estuarine sediments: implications for the relative contribution of organic matter from various sources. Org Geochem 32:453–467. doi: 10.1016/S0146-6380(00)00189-3 CrossRefGoogle Scholar
  54. Tatián M, Sahade R, Esnal GB (2004) Diet components in the food of Antarctic ascidians living at low levels of primary production. Antarct Sci 16:123–128. doi: 10.1017/S0954102004001890 CrossRefGoogle Scholar
  55. Tatián M, Sahade R, Mercuri G et al (2008) Feeding ecology of benthic filter-feeders at Potter Cove, an Antarctic coastal ecosystem. Polar Biol 31:509–517. doi: 10.1007/s00300-007-0379-7 CrossRefGoogle Scholar
  56. Teixeira LCRS, Peixoto RS, Rosado AS (2013) Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay in maritime Antarctica. In: Bruijn FJ de (ed) Molecular microbial ecology of the rhizosphere. Wiley, HobokenGoogle Scholar
  57. Tin T, Fleming ZL, Hughes KA et al (2008) Impacts of local human activities on the Antarctic environment. Antarct Sci 21:3–33. doi: 10.1017/S0954102009001722 CrossRefGoogle Scholar
  58. Venkatesan MI, Santiago CA (1989) Sterols in ocean sediments: novel tracers to examine habitats of cetaceans, pinnipeds, penguins and humans. Mar Biol 102:431–437CrossRefGoogle Scholar
  59. Villinski JC, Hayes JM, Brassell SC et al (2008) Sedimentary sterols as biogeochemical indicators in the Southern Ocean. Org Geochem 39:567–588. doi: 10.1016/j.orggeochem.2008.01.009 CrossRefGoogle Scholar
  60. Volkman JK (1986) A review of sterol markers for marine and terrigenous organic matter. Org Geochem 9:83–99. doi: 10.1016/0146-6380(86)90089-6 CrossRefGoogle Scholar
  61. Volkman JK (2003) Sterols in microorganisms. Appl Microbiol Biotechnol 60:495–506. doi: 10.1007/s00253-002-1172-8 CrossRefPubMedGoogle Scholar
  62. Volkman JK (2006) Lipid markers for marine organic matter. The Handbook of Enviromental. Chemistry 2:27–70. doi: 10.1007/698 Google Scholar
  63. Volkman JK, Farrington JW, Gagosian RB (1987) Marine and terrigenous lipids in coastal sediments from the Peru upwelling region at 15°S: Sterols and triterpene alcohols. Org Geochem 11:463–477. doi: 10.1016/0146-6380(87)90003-9 CrossRefGoogle Scholar
  64. Wang J, Wang Y, Wang X, Sun L (2007) Penguins and vegetations on Ardley Island, Antarctica: evolution in the past 2400 years. Polar Biol 30:1475–1481. doi: 10.1007/s00300-007-0308-9 CrossRefGoogle Scholar
  65. Wisnieski E, Bícego MC, Montone RC et al (2014) Characterization of sources and temporal variation in the organic matter input indicated by n-alkanols and sterols in sediment cores from Admiralty Bay, King George Island, Antarctica. Polar Biol 37:483–496. doi: 10.1007/s00300-014-1445-6 CrossRefGoogle Scholar
  66. Yunker MB, Belicka LL, Harvey HR, Macdonald RW (2005) Tracing the inputs and fate of marine and terrigenous organic matter in Arctic Ocean sediments: a multivariate analysis of lipid biomarkers. Deep Sea Res Part II Top Stud Oceanogr 52:3478–3508. doi: 10.1016/j.dsr2.2005.09.008 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Centro de Estudos do Mar da Universidade Federal do ParanáPontal do ParanáBrazil
  2. 2.Programa de Pós-Graduação em Sistemas Costeiros e Oceânicos (PGSISCO) da Universidade Federal do ParanáPontal do ParanáBrazil
  3. 3.Facultad de Farmacia y Bioquímica, Cátedra de Biotecnología e Instituto de Nanobiotecnología UBA-CONICETUniversidad de Buenos AiresBuenos AiresArgentina
  4. 4.Instituto Antártico Argentino, Dirección Nacional del AntárticoBuenos AiresArgentina

Personalised recommendations