Polar Biology

, Volume 40, Issue 8, pp 1581–1592 | Cite as

Small-scale spatial and temporal variation of life-history traits of common frogs (Rana temporaria) in sub-Arctic Finland

  • Dan Cogălniceanu
  • Raluca I. BăncilăEmail author
  • Rodica Plăiaşu
  • Daniela Roşioru
  • Juha Merilä
Original Paper


Small-scale spatial and temporal variation in abiotic and biotic environmental conditions can lead to large differences in mean values of important life-history traits in ectothermic vertebrates, such as amphibians. However, relatively little is known about small-scale variation in life-history traits of sub-Arctic amphibians. We studied the spatio-temporal variation of adult life-history traits linked to age and body size in the common frog (Rana temporaria) from low (i.e., valley at 480 m a.s.l.) and high (i.e., hill at 530–650 m a.s.l.) altitude sites in the sub-Arctic Kilpisjärvi area (Finland). Data on life-history traits of frogs from hill sites collected during a 3-year field study were compared with previously published data from the valley sites. The results showed spatio-temporal variation in life-history traits, frogs responding to spatio-temporal variation in the environmental conditions with variation in age, life span, survival rates, body size, and mass. Frogs from hill sites had shorter life span, both in terms of mean age (5.6 versus 10.5 years) and longevity (9–10 versus 18 years), smaller snout-vent length (63 versus 77 mm), and body mass (24 versus 45 g) than frogs from valley sites. The differences were more pronounced in females than in males indicating some sex-specific responses to environmental differences among sites. The results show that small differences in elevation (or elevation-related abiotic and biotic factors) can translate to large differences in mean values of important life-history traits in common frogs living at the edge of their distribution range.


Spatio-temporal variation Life-history traits Skeletochronology Age structure 



Fieldwork was made possible thanks to three grants from Lapland Biosphere–Atmosphere Facility Finland Programs Lapbiat (2003) and Lapbiat 2 (2009 and 2010), funded by the EU. Collecting permits were provided by Lapland Regional Environmental Center (permit no. LAP-2009-L-356-254) and Lapland Center for Economic Development, Transport and the Environment (permit no. LAPELY/926/07.01.2010). The skeletochronological procedure was approved by the Ethics Committee of the Faculty of Natural and Agricultural Sciences, Ovidius University, Constanţa on 19.06.2013. Special thanks to Ruşti Dorel, Dr. Ioan Ghira, Jianu Claudia, and Dr. Tudor Marian for their help with fieldwork, to Dr. Tibor Kovacs for the valuable advice and support during the fieldwork, and to Dr. Antero Järvinen that provided constant support and advice.

Supplementary material

300_2017_2081_MOESM1_ESM.docx (33 kb)
Supplementary material 1 (DOCX 33 KB)


  1. Aitken SN, Yeaman S, Holliday JA, Wang T, Curtis-McLane S (2008) Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol Appl 1:95–111. doi: 10.1111/j.1752-4571.2007.00013.x CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alho JS (2004) Population biology of the common frog in subarctic. MSc Thesis, University of HelsinkiGoogle Scholar
  3. Alho JS, Herczeg G, Merilä J (2008) Female–biased sex ratios in subarctic common frogs. J Zool 275:5763. doi: 10.1111/j.1469-7998.2007.00409.x CrossRefGoogle Scholar
  4. Alho JS, Matsuba C, Merilä J (2010) Sex reversal and primary sex ratios in the common frog (Rana temporaria). Mol Ecol 19:17631773. doi: 10.1111/j.1365-294X.2010.04607.x CrossRefGoogle Scholar
  5. Alho JS, Herczeg G, Laugen AT, Räsänen K, Laurila A, Merilä J (2011) Allen’s rule revisited: quantitative genetics of extremity length in the common frog along a latitudinal gradient. J Evol Biol 24:5970. doi: 10.1111/j.1420-9101.2010.02141.x CrossRefGoogle Scholar
  6. Angilletta Jr. MJ, Steury TD, Sears MW (2004) Temperature, growth rate and body size in ectotherms: fitting pieces of a life history puzzle. Integr Comp Biol 44:498509. doi: 10.1093/icb/44.6.498 Google Scholar
  7. Augert D, Joly P (1993) Plasticity of age at maturity between two neighbouring populations of the common frog (Rana temporaria L.). Can J Zool 71:2633. doi: 10.1139/z93-005 CrossRefGoogle Scholar
  8. Blank L, Luoto M, Merilä J (2014) Potential effects of climate change on the distribution of the common frog Rana temporaria at its northern range margin. Isr J Ecol Evol 59:130140. doi: 10.1080/15659801.2014.888825 Google Scholar
  9. Bulgarella M, Trewick SA, Godfrey AJR, Sinclair BJ, Morgan-Richards M (2015) Elevational variation in adult body size and growth rate but not in metabolic rate in the tree weta Hemideina crassidens. J Insect Physiol 75:3038. doi: 10.1016/j.jinsphys.2015.02.012 CrossRefGoogle Scholar
  10. Castanet J, Smirina E (1990) Introduction to the skeletochronological method in amphibians and reptiles. Ann Sci Nat Zool (Paris) 11:191196Google Scholar
  11. Cogălniceanu D, Băncilă R, Plăiaşu R, Samoilă C, Hartel T (2012) Aquatic habitat used by amphibians with specific reference to Rana temporaria at high elevations (Retezat Mountains National Park, Romania). Ann Limnol—Int J Lim 48:355362. doi: 10.1051/limn/2012026 Google Scholar
  12. Elmberg J (1990) Long-term survival, length of breeding season, and operational sex ratio in a boreal population of common frogs, Rana temporaria L. Can J Zool 68:121127. doi: 10.1139/z90-017 CrossRefGoogle Scholar
  13. Endler JA (1977) Geographic variation, speciation, and clines (No. 10). Princeton University Press, PrincetonGoogle Scholar
  14. Gienapp P, Teplitsky C, Alho JS, Mills JA, Merilä J (2008) Climate change and evolution: disentangling environmental and genetic responses. Mol Ecol 17:167178. doi: 10.1111/j.1365-294X.2007.03413.x PubMedGoogle Scholar
  15. Hemelaar ASM (1985) An improved method to estimate the number of year rings resorbed in phalanges of Bufo bufo and its application to populations from different latitudes and altitudes. Amphib-Reptilia 6:343353. doi: 10.1163/156853885X00326 CrossRefGoogle Scholar
  16. Hettyey A, Laurila A, Herczeg G, Jönsson KI, Kovács T, Merilä J (2005) Does testis weight decline towards the Subarctic? A case study on the common frog, Rana temporaria. Naturwissenschaften 92:188192. doi: 10.1007/s00114-005-0607-3 CrossRefGoogle Scholar
  17. Hill JK, Griffiths HM, Thomas CD (2011) Climate change and evolutionary adaptations at species’ range margins. Annu Rev Entomol 56:143159. doi: 10.1146/annurev-ento-120709-144746 CrossRefGoogle Scholar
  18. Hjernquist MB, Söderman F, Jönsson KI, Herczeg G, Laurila A, Merilä J (2012) Seasonality determines patterns of growth and age structure over a geographic gradient in an ectothermic vertebrate. Oecologia 170:641649. doi: 10.1007/s00442-012-2338-4 CrossRefGoogle Scholar
  19. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346363. doi: 10.1002/bimj.200810425 CrossRefGoogle Scholar
  20. Järvinen A (1987) Basic climatological data on the Kilpisjärvi area, NW Finnish Lapland. Kilpisjärvi Notes 10:116Google Scholar
  21. Järvinen A (1989) The life history of Ranunculus glacialis, an Arctic-Alpine perennial herb, in Finnish Lapland. Holarctic Ecol 12:152162. doi: 10.1111/j.1600-0587.1989.tb00834.x Google Scholar
  22. Järvinen A, Partanen R (2008) Stand dynamics of mountain birch, Betula pubescens ssp. czerepanovii (Orlova) Hämet-Ahti in NW Finnish Lapland. Kilpisjärvi Notes 21: 6–13Google Scholar
  23. Johansson M, Räsänen K, Merilä J (2001) Comparison of nitrate tolerance between different populations of the common frog, Rana temporaria. Aquat Toxicol 54:114. doi: 10.1016/S0166-445X(00)00182-x PubMedGoogle Scholar
  24. Jönsson KI, Herczeg G, O’Hara RB, Söderman F, Ter Schure AF, Larsson P, Merilä J (2009) Sexual patterns of prebreeding energy reserves in the common frog Rana temporaria along a latitudinal gradient. Ecography 32:831839. doi: 10.1111/j.1600-0587.2009.05352.x Google Scholar
  25. Kauhanen HO (2013) Mountains of Kilpisjärvi host an abundance of threatened plants in Finnish Lapland. Bot Pac 2:4352. doi: 10.17581/bp.2013.02105 Google Scholar
  26. Kimura DK (1980) Likelihood methods for the von Bertalanffy growth curve. US Fish Bull 77:765776Google Scholar
  27. Krebs CJ (1989) Ecological methodology. Harper and Row, New YorkGoogle Scholar
  28. Kuzmin S, Ishchenko V, Tuniyev B, Beebee T, Andreone F, Nyström P, Anthony B, Schmidt B, Ogrodowczyk A, Ogielska M, Bosch J, Miaud C, Loman J, Cogălniceanu D, Kovács T, Kiss I (2009) Rana temporaria. The IUCN Red List of Threatened Species. Version 2014.3. Accessed 11 Mar 2015
  29. Laugen AT, Laurila A, Merilä J (2003) Latitudinal and temperature-dependent variation in embryonic development and growth in Rana temporaria. Oecologia 135:548–554. doi: 10.1007/s00442-003-1229-0 PubMedGoogle Scholar
  30. Laugen AT, Laurila A, Jönsson I, Söderman F, Merilä J (2005) Do common frogs (Rana temporaria) follow Bergmann’s rule? Evol Ecol Res 7:717731Google Scholar
  31. Linhart YB, Grant MC (1996) Evolutionary significance of local genetic differentiation in plants. Annu Rev Ecol Syst 27:237277. doi: 10.1146/annurev.ecolsys.27.1.237 Google Scholar
  32. Lovich JE, Gibbons JW (1992) A review of techniques for quantifying sexual size dimorphism. Growth Dev Aging 56:269281Google Scholar
  33. Ludwig G, Sinsch U, Pelster B (2015) Behavioural adaptations of Rana temporaria to cold climates. J Therm Biol 49:8290. doi: 10.1016/j.jtherbio.2015.02.006 PubMedGoogle Scholar
  34. Marchand PJ (2014) Life in the cold: an introduction to winter ecology. University Press of New England, Lebanon, New HampshireGoogle Scholar
  35. Matsuba C, Merilä J (2006) Genome size variation in the common frog Rana temporaria. Hereditas 143:155158. doi: 10.1111/j.2006.0018-0661.01919.x PubMedGoogle Scholar
  36. Matsuba C, Alho JS, Merilä J (2010) Recombination rate between sex chromosomes depends on phenotypic sex in the common frog. Evolution 64:36343637. doi: 10.1111/j.1558-5646.2010.01076.x PubMedGoogle Scholar
  37. Mayr E (1963) Animal species and their evolution. Belknap Press, HarvardCrossRefGoogle Scholar
  38. Merilä J, Hendry AP (2014) Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evol Appl 7:1–14. doi: 10.1111/eva.12137 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Merilä J, Laurila A, Laugen AT, Räsänen K, Pahkala M (2000) Plasticity in age and size at metamorphosis in Rana temporaria comparison of high and low latitude populations. Ecography 23 :457–465. doi: 10.1111/j.1600-0587.2000.tb00302.x Google Scholar
  40. Merilä J, Laurila A, Lindgren B (2004) Variation in the degree and costs of adaptive phenotypic plasticity among Rana temporaria populations. J Evol Biol 17:11321140. doi: 10.1111/j.1420-9101.2004.00744.x PubMedGoogle Scholar
  41. Miaud C, Merilä J (2001) Local adaptation or environmental induction? Causes of population differentiation in alpine amphibians. Biota 2:3150Google Scholar
  42. Miaud C, Guyétant R, Elmberg J (1999) Variations in life-history traits in the common frog Rana temporaria (Amphibia: Anura): a literature review and new data from the French Alps. J Zool 249 :6173. doi: 10.1111/j.1469-7998.1999.tb01060.x Google Scholar
  43. Moritz C, Agudo R (2013) The future of species under climate change: resilience or decline? Science 341:504508. doi: 10.1126/science.1237190 PubMedGoogle Scholar
  44. Morrison C, Hero JM (2003) Geographic variation in life—history characteristics of amphibians: a review. J Anim Ecol 72:270279. doi: 10.1046/j.1365-2656.2003.00696.x Google Scholar
  45. Muir AP, Biek R, Mable BK (2014) Local adaptation with gene flow: temperature parameters drive adaptation to altitude in the common frog (Rana temporaria). Mol Ecol 23:561574. doi: 10.1111/mec.12624 PubMedPubMedCentralGoogle Scholar
  46. Nelson GA (2014) Package ‘fishmethods’ in R. Accessed 20 March 2015
  47. Ogle DH (2010) FSA—package in R. Accessed 20 March 2015
  48. Pahkala M, Laurila A, Merilä J (2002) Effects of ultraviolet-B radiation on common frog Rana temporaria embryos from along a latitudinal gradient. Oecologia 133:458465. doi: 10.1007/s00442-002-1058-6 PubMedGoogle Scholar
  49. Palo JU, O’Hara RB, Laugen AT, Laurila A, Primmer CR, Merilä J (2003) Latitudinal divergence of common frog (Rana temporaria) life history traits by natural selection: evidence from a comparison of molecular and quantitative genetic data. Mol Ecol 12:19631978. doi: 10.1046/j.1365-294X.2003.01865.x PubMedGoogle Scholar
  50. Palo JU, Schmeller DS, Laurila A, Primmer CR, Kuzmin SL, Merilä J (2004) High degree of population subdivision in a widespread amphibian. Mol Ecol 13:2631–2644. doi: 10.1111/j.1365-294X.2004.02269.x Google Scholar
  51. Patrelle C, Hjernquist MB, Laurila A, Söderman F, Merilä J (2012a) Sex differences in age structure, growth rate and body size of common frogs Rana temporaria in the subarctic. Polar Biol 35:15051513. doi: 10.1007/s00300-012-1190-7 Google Scholar
  52. Patrelle C, Miaud C, Cristina N, Kulberg P, Merilä J (2012b) Chytrid fungus screening in a population of common frogs from Northern Finland. Herpetol Rev 43:422425Google Scholar
  53. Perrin N (2009) Sex reversal: a fountain of youth for sex chromosomes? Evolution 63:30433049. doi: 10.1111/j.1558-5646.2009.00837.x Google Scholar
  54. Plăiaşu R, Băncila RI, Cogălniceanu D (2010) Body size variation in Rana temporaria populations inhabiting extreme environments. Ovidius Univ Ann Nat Sci Biol Ecol Ser 14:121126Google Scholar
  55. Ranta E, Laurila A, Elmberg J (1994) Reinventing the wheel: analysis of sexual dimorphism in body size. Oikos 70:313321. doi: 10.2307/3545768 Google Scholar
  56. Rodrigues N, Merilä J, Patrelle C, Perrin N (2014) Geographic variation in sex—chromosome differentiation in the common frog (Rana temporaria). Mol Ecol 23:34093418. doi: 10.1111/mec.12829 Google Scholar
  57. Rodrigues N, Vuille Y, Brelsford A, Merilä J, Perrin N (2016) The genetic contribution to sex determination and number of sex chromosomes vary among populations of common frogs (Rana temporaria). Heredity 117:2532. doi: 10.1038/hdy.2016.22 PubMedPubMedCentralGoogle Scholar
  58. Roff DA (1992) Evolution of life histories: theory and analysis. Chapman and Hall, New YorkGoogle Scholar
  59. Rozenblut B, Ogielska M (2005) Development and growth of long bones in European water frogs (Amphibia: Anura: Ranidae), with remarks on age determination. J Morphol 265:304317. doi: 10.1002/jmor.10344 PubMedGoogle Scholar
  60. Ryser J (1996) Comparative life histories of a low-and a high-elevation population of the common frog Rana temporaria. Amphib-Reptilia 17:183195. doi: 10.1163/156853896X00379 Google Scholar
  61. Schabetsberger R, Goldschmid A (1994) Age structure and survival rate in the Alpine newts (Triturus alpestris) at high altitude. Alytes 12:4147Google Scholar
  62. Schneider DC (2001) The rise of the concept of scale in ecology. BioScience 51:545553. doi: 10.1641/0006-3568(2001)051[0545:trotco];2 Google Scholar
  63. Sinsch U (2015) Review: Skeletochronological assessment of demographic life-history traits in amphibians. Herpetol J 25:513.Google Scholar
  64. Sinsch U, Pelster B, Ludwig G (2015) Large—scale variation of size- and age—related life—history traits in the common frog: a sensitive test case for macroecological rules. J Zool 297:3243. doi: 10.1111/jzo.12243 Google Scholar
  65. Smirina EM (1994) Age-determination and longevity in amphibians. Gerontology 40:133146. doi: 10.1159/000213583 PubMedGoogle Scholar
  66. Stearns SC (1992) The evolution of life histories. Oxford University Press, OxfordGoogle Scholar
  67. Ter Schure AF, Larsson P, Merilä J, Jönsson KI (2002) Latitudinal fractionation of polybrominated diphenyl ethers and polychlorinated biphenyls in frogs (Rana temporaria). Environ Sci Technol 36:50575061. doi: 10.1021/es0258632 PubMedGoogle Scholar
  68. Van Buskirk J, Arioli M (2005) Habitat specialization and adaptive phenotypic divergence of anuran populations. J Evol Biol 18:596608. doi: 10.1111/j.1420-9101.2004.00869.x Google Scholar
  69. Wagner A, Schabetsberger R, Sztatecsny M, Kaiser R (2011) Skeletochronology of phalanges underestimates the true age of long-lived Alpine newts (Ichthyosaura alpestris). Herpetol J 21:145–148Google Scholar
  70. Wood SN (2006) Generalized additive models: an introduction with R. Chapman and Hall/CRC Press, Boca RatonGoogle Scholar
  71. Saikkonen K, Taulavuori K, Hyvönen T, Gundel PE, Hamilton CE, Vänninen I, Nissinen A, Helander M (2012) Climate change-driven species’ range shifts filtered by photoperiodism. Nat Clim Chang 2:239242. doi: 10.1038/nclimate1430

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Dan Cogălniceanu
    • 1
  • Raluca I. Băncilă
    • 1
    • 2
    Email author
  • Rodica Plăiaşu
    • 1
    • 2
  • Daniela Roşioru
    • 3
  • Juha Merilä
    • 4
  1. 1.Faculty of Natural Sciences and Agricultural SciencesUniversity Ovidius ConstanţaConstanţaRomania
  2. 2.“Emil Racoviţă” Institute of Speleology of Romanian AcademyBucharestRomania
  3. 3.National Institute for Marine Research and Development “Grigore Antipa”ConstanţaRomania
  4. 4.Ecological Genetics Research Unit, Department of BiosciencesUniversity of HelsinkiHelsinkiFinland

Personalised recommendations