Skip to main content

Advertisement

Log in

Rising temperatures and sea-ice-free winters affect the succession of Arctic macrozoobenthic soft-sediment communities (Kongsfjorden, Svalbard)

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

In the Arctic, the currently observed rising air temperature results in more frequent calving of icebergs. The latter derive from tidewater glaciers. Arctic macrozoobenthic soft-sediment communities are considerably disturbed by direct hits and sediment reallocation caused by iceberg scouring. With the aim to describe the primary succession of macrozoobenthic communities following these events, scientific divers installed 28 terracotta containers in the soft-sediment off Brandal (Kongsfjorden, Svalbard, Norway) at 20 m water depth in 2002. The containers were filled with a bentonite–sand mixture resembling the natural sediment. Samples were taken annually between 2003 and 2007. A shift from pioneering species (e.g. Cumacea: Lamprops fuscatus) towards more specialised taxa, as well as from surface detritivores towards subsurface detritivores was observed. This is typical for an ecological succession following the facilitation and inhibition succession model. Similarity between experimental and non-manipulated communities from 2003 was significantly highest after 3 years of succession. In the following years, similarity decreased, probably due to elevated temperatures, which prevented the fjord system from freezing. Some organisms, numerically important in the non-manipulated community (e.g. the polychaete Dipolydora quadrilobata) did not colonise the substrate during the experiment. This suggests that the community had not fully matured within the first 3 years. Later, the settlement was probably impeded by consequences of rising temperatures. This demonstrates the long-lasting effects of severe disturbances on Arctic macrozoobenthic communities. Furthermore, environmental changes, such as rising temperatures coupled with enhanced food availability due to an increasing frequency of sea-ice-free days per year, may have a stronger effect on succession than exposure time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alldredge AL, King JM (1985) The distance demersal zooplankton migrate above the benthos: implications for predation. Mar Biol 84:253–260

    Article  Google Scholar 

  • Anderson M, Gorley RN, Clarke RK (2008) Permanova+ for Primer: guide to software and statistical methods. Primer-E Ltd, Plymouth, pp 1–214

    Google Scholar 

  • Arndt JE, Niessen F, Jokat W, Dorschel B (2014) Deep water paleo-iceberg scouring on top of Hovgaard Ridge-Arctic Ocean. Geophys Res Lett 41:5068–5074

    Article  Google Scholar 

  • Arntz WE (1981) Entwicklung von marinen Bodentiergemeinschaften bei Ausschluß von Räubern: Nur Artefakte? Meeresforschung 28:189–204

    Google Scholar 

  • Arntz WE, Rumohr H (1982) An experimental study of macrobenthic colonization and succession, and the importance of seasonal variation in temperate latitudes. J Exp Mar Biol Ecol 64:17–45

    Article  Google Scholar 

  • Arntz WE, Rumohr H (1986) Fluctuations of benthic macrofauna during succession and in an established community. Meeresforschung 31:97–114

    Google Scholar 

  • Barnes DK (1996) Low levels of colonisation in Antarctica: the role of bryozoans in early community development. In: Gordon DP, Smith AM, Grant-Mackie JA (eds) Bryozoans in space and time: proceedings of the 10th international bryozoology conference. National Institute of Water and Atmospheric Research Ltd, Wellington, pp 19–28

    Google Scholar 

  • Barnes DK (1999) The influence of ice on polar nearshore benthos. J Mar Biol Assoc UK 79:401–407

    Article  Google Scholar 

  • Barnes DK, Conlan KE (2007) Disturbance, colonization and development of Antarctic benthic communities. Philos Trans R Soc B 362:11–38

    Article  Google Scholar 

  • Barnes DK, Souster T (2011) Reduced survival of Antarctic benthos linked to climate-induced iceberg scouring. Nat Clim Change 1:365–368

    Article  Google Scholar 

  • Bathmann U, Fischer G, Müller PJ, Gerdes D (1991) Short-term variations in particulate matter sedimentation off Kapp Norvegia, Weddell Sea, Antarctica: relation to water mass advection, ice cover, plankton biomass and feeding activity. Polar Biol 11:185–195

    Article  Google Scholar 

  • Beadman HA, Kaiser MJ, Galanidi M, Shucksmith R, Willows RI (2004) Changes in species richness with stocking density of marine bivalves. J Appl Ecol 41:464–475

    Article  Google Scholar 

  • Beuchel F, Gulliksen B, Carroll ML (2006) Long-term patterns of rocky bottom macrobenthic community structure in an Arctic fjord (Kongsfjorden, Svalbard) in relation to climate variability (1980–2003). J Mar Syst 63:35–48

    Article  Google Scholar 

  • Bluhm B, Iken K, Laudien J, Lippert H (2001) German activity in cold water scientific diving. In: Jewett SC (ed) Cold water diving for science. Proceedings of the 21st annual scientific diving symposium. American Academy of Underwater Sciences, University of Alaska Sea Grant, Fairbanks, pp 1–4

  • Boeckner MJ, Sharma J, Proctor HC (2009) Revisiting the meiofauna paradox: dispersal and colonization of nematodes and other meiofaunal organisms in low-and high-energy environments. Hydrobiologia 624:91–106

    Article  Google Scholar 

  • Bonsdorff E (2006) Zoobenthic diversity-gradients in the Baltic Sea: continuous post-glacial succession in a stressed ecosystem. J Exp Mar Biol Ecol 330:383–391

    Article  Google Scholar 

  • Bray JR, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr 27:325–349

    Article  Google Scholar 

  • Brey T, Clarke A (1993) Population dynamics of marine benthic invertebrates in Antarctic and subantarctic environments: are there unique adaptations? Antarct Sci 5:253–266

    Article  Google Scholar 

  • Brown KM, Fraser KP, Barnes DK, Peck LS (2004) Links between the structure of an Antarctic shallow-water community and ice-scour frequency. Oecologia 141:121–129

    Article  PubMed  Google Scholar 

  • Brunswig D, Arntz WE, Rumohr H (1976) A tentative field experiment on population dynamics of macrobenthos in the western Baltic. Meeresforschung 3:49–59

    Google Scholar 

  • Bullard SG, Whitlatch RB, Osman RW (2004) Checking the landing zone: do invertebrate larvae avoid settling near superior spatial competitors? Mar Ecol Prog Ser 280:239–247

    Article  Google Scholar 

  • Buzhinskaja GN (2006) Ecology of reproduction of shallow water benthic polychaetes in high latitude Arctic seas. Proc Zool Inst Russ Acad Sci 310:25–34

    Google Scholar 

  • Chandler GT, Fleeger JW (1983) Meiofaunal colonization of azoic estuarine sediment in Louisiana: mechanisms of dispersal. J Exp Mar Biol Ecol 69:175–188

    Article  Google Scholar 

  • Clarke A (1991) What is cold adaptation and how should we measure it? Am Zool 31:81–92

    Article  Google Scholar 

  • Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. Primer-E Ltd, Plymouth, pp 1–192

    Google Scholar 

  • Commito JA, Celano EA, Celico HJ, Como S, Johnson JP (2005) Mussels matter: postlarval dispersal dynamics altered by a spatially complex ecosystem engineer. J Exp Mar Biol Ecol 316:133–147

    Article  Google Scholar 

  • Conlan KE, Lenihan HS, Kvitek RG, Oliver JS (1998) Ice scour disturbance to benthic communities in the Canadian High Arctic. Mar Ecol Prog Ser 166:1–16

    Article  Google Scholar 

  • Connell JH, Slatyer RO (1977) Mechanisms of succession in natural communities and their role in community stability and organization. Am Nat 111:1119–1144

    Article  Google Scholar 

  • Conover WJ (1980) Practical nonparametric statistics, 2nd edn. Wiley, New York

    Google Scholar 

  • Cottier FR, Nilsen F, Inall ME, Gerland S, Tverberg V, Svendsen H (2007) Wintertime warming of an Arctic shelf in response to large‐scale atmospheric circulation. Geophys Res Lett 34. doi:10.1029/2007GL029948

  • Day RW, Osman RW (1981) Predation by Patiria miniata (Asteroidea) on bryozoans: prey diversity may depend on the mechanism of succession. Oecologia 51:300–309

    Article  Google Scholar 

  • Dayton PK, Mordida BJ, Bacon F (1994) Polar marine communities. Am Zool 34:90–99

    Article  Google Scholar 

  • Dittmann S (1990) Mussel beds—amensalism or amelioration for intertidal fauna? Helgoländer Meeresunters 44:335–352

    Article  Google Scholar 

  • Dowdeswell JA, Forsberg CF (1992) The size and frequency of icebergs and bergy bits derived from tidewater glaciers in Kongsfjorden, northwest Spitsbergen. Polar Res 11:81–91

    Article  Google Scholar 

  • Dybern BI, Ackefors H, Elmgren R (1976) Recommendations on methods for marine biological studies in the Baltic Sea. Balt Mar Biol Publ 1:1–98

    Google Scholar 

  • Farrell TM (1991) Models and mechanisms of succession: an example from a rocky intertidal community. Ecol Monogr 61:95–113

    Article  Google Scholar 

  • Field JG, Clarke KR, Warwick RM (1982) A practical strategy for analysing multispecies distribution patterns. Mar Ecol Prog Ser 8:37–52

    Article  Google Scholar 

  • Foster MS (1975) Regulation of algal community development in a Macrocystis pyrifera forest. Mar Biol 32:331–342

    Article  Google Scholar 

  • Fredriksen S, Bartsch I, Wiencke C (2014) New additions to the benthic marine flora of Kongsfjorden, western Svalbard, and comparison between 1996/1998 and 2012/2013. Bot Mar 57:203–216

    Article  Google Scholar 

  • Gallagher ED, Jumars PA, Trueblood DD (1983) Facilitation of soft-bottom benthic succession by tube builders. Ecology 64:1200–1216

    Article  Google Scholar 

  • Gray JS (1977) The stability of benthic ecosystems. Helgoländer Wiss Meeresunters 30:427–444

    Article  Google Scholar 

  • Guerra-García JM, García-Gómez JC (2006) Recolonization of defaunated sediments: fine versus gross sand and dredging versus experimental trays. Estuar Coast Shelf Sci 68:328–342

    Article  Google Scholar 

  • Gulliksen B, Svensen E (2004) Svalbard and life in polar oceans. Kom Forl Kristiansund, Norway, pp 1–160

    Google Scholar 

  • Gutt J, Piepenburg D (2003) Scale-dependent impact on diversity of Antarctic benthos caused by grounding of icebergs. Mar Ecol Prog Ser 253:77–83

    Article  Google Scholar 

  • Gutt J, Starmans A (2002) Quantification of iceberg impact and benthic recolonisation patterns in the Weddell Sea (Antarctica). Ecological studies in the Antarctic sea ice zone. Springer, Berlin, pp 210–214

    Chapter  Google Scholar 

  • Gutt J, Starmans A, Dieckmann G (1996) Impact of iceberg scouring on polar benthic habitats. Mar Ecol Prog Ser 137:311–316

    Article  Google Scholar 

  • Hansen L (1999) The intertidal macrofauna and macroalgae at five Arctic localities (Disko, West Greenland). In: Brandt A, Thomsen AH, Heide-Jørgensen H, Kristensen MR, Ruhberg H (eds) The 1998 Danish-German excursion to Disko Island, West Greenland. Ber Polarforsch, pp 92–110

  • Heip CHR (1980) Meiobenthos as a tool in the assessment of marine environmental quality. Rapp Procès-Verbaux Réun Perm Int Pour Explor Mer 179:182–187

    Google Scholar 

  • Herrmann M (2006) Makrozoobenthos-Gemeinschaften arktischer Weichböden: Struktur und Bedeutung als Nahrungsgrundlage demersaler Fische. Ber Zur Polar- Meeresforsch 528:1–97

    Google Scholar 

  • Hill V, Cota G (2005) Spatial patterns of primary production on the shelf, slope and basin of the Western Arctic in 2002. Deep Sea Res Part II Top Stud Oceanogr 52:3344–3354

    Article  Google Scholar 

  • Hop H, Pearson T, Hegseth EN, Kovacs KM, Wiencke C, Kwasniewski S, Eiane K, Mehlum F, Gulliksen B, Włodarska-Kowalczuk M, Lydersen C, Węsławski JM, Cochrane S, Gabrielsen GW, Leakey RJG, Lønne OJ, Zajączkowski M, Falk-Petersen S, Kendall M, Wängberg SÅ, Bischof K, Voronkov AY, Kovaltchouk NA, Wiktor J Jr, Poltermann M, di Prisco G, Papucci C, Gerland S (2002) The marine ecosystem of Kongsfjorden, Svalbard. Polar Res 21:167–208

    Article  Google Scholar 

  • Hop H, Wiencke C, Vögele B, Kovaltchouk NA (2012) Species composition, zonation, and biomass of marine benthic macroalgae in Kongsfjorden, Svalbard. Bot Mar 55:399–414

    Article  Google Scholar 

  • Iribarne O, Fernandez M, Armstrong D (1994) Does space competition regulate density of juvenile Dungeness crab Cancer magister Dana in sheltered habitats? J Exp Mar Biol Ecol 183:259–271

    Article  Google Scholar 

  • Josefson AB, Forbes TL, Rosenberg R (2002) Fate of phytodetritus in marine sediments: functional importance of macrofaunal community. Mar Ecol Prog Ser 230:71–85

    Article  Google Scholar 

  • Kaczmarek H, Włodarska-Kowalczuk M, Legeżyńska J, Zajączkowski M (2005) Shallow sublittoral macrozoobenthos in Kongsfjord, West Spitsbergen, Svalbard. Pol Polar Res 26:137–155

    Google Scholar 

  • Khaitov V (2013) Life in an unstable house: community dynamics in changing mussel beds. Hydrobiologia 706:139–158

    Article  Google Scholar 

  • Kortsch S, Primicerio R, Beuchel F, Renaud PE, Rodrigues J, Lønne OJ, Gulliksen B (2012) Climate-driven regime shifts in Arctic marine benthos. Proc Natl Acad Sci 109:14052–14057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotwicki L, Szymelfenig M, De Troch M, Zajączkowski M (2004) Distribution of meiofauna in Kongsfjorden, Spitsbergen. Polar Biol 27:661–669

    Article  Google Scholar 

  • Kruse I, Strasser M, Thiermann F (2004) The role of ecological divergence in speciation between intertidal and subtidal Scoloplos armiger (Polychaeta, Orbiniidae). J Sea Res 51:53–62

    Article  Google Scholar 

  • Laudien J, Herrmann M, Arntz WE (2004) Soft bottom community structure and diversity in Kongsfjorden (Svalbard) In: Wiencke C (ed) The coastal ecosystem of Kongsfjorden, Svalbard. Synopsis of biological research performed at the Koldewey station in the years 1991–2003. Ber Polarforsch Meeresforsch 492:91–102

  • Laudien J, Herrmann M, Arntz WE (2007a) Soft bottom species richness and diversity as a function of depth and iceberg scour in Arctic glacial Kongsfjorden (Svalbard). Polar Biol 30:1035–1046

    Article  Google Scholar 

  • Laudien J, Velez JA, Funk D, Sahade RJ (2007b) Granulometric structure of a soft sediment habitat at 10 m water depth at Kongsfjorden (Spitsbergen, Arctic). doi:10.1594/PANGAEA.586843

  • Lee H, Vanhove S, Peck LS, Vincx M (2001) Recolonisation of meiofauna after catastrophic iceberg scouring in shallow Antarctic sediments. Polar Biol 24:918–925

    Article  Google Scholar 

  • Legeżyńska J, Kędra M, Walkusz W (2012) When season does not matter: summer and winter trophic ecology of Arctic amphipods. Hydrobiologia 684:189–214

    Article  CAS  Google Scholar 

  • Lenihan HS, Micheli F (2001) Soft-sediment communities. In: Bertness MD, Gaines SD, Hay ME (eds) Marine community ecology. Sinauer Associates Inc., Sunderland, pp 253–287

    Google Scholar 

  • Levin LA, Creed EL (1986) Effect of temperature and food availability on reproductive responses of Streblospio benedicti (Polychaeta: Spionidae) with planktotrophic or lecithotrophic development. Mar Biol 92:103–113

    Article  Google Scholar 

  • Lippert H, Iken K, Rachor E, Wiencke C (2001) Macrofauna associated with macroalgae in the Kongsfjord (Spitsbergen). Polar Biol 24:512–522

    Article  Google Scholar 

  • Lippestad H (2008) Meteorologisk institutt. http://met.no. Accessed 10 March 2012

  • Lu L, Wu RSS (2007) Seasonal effects on recolonization of macrobenthos in defaunated sediment: a series of field experiments. J Exp Mar Biol Ecol 351:199–210

    Article  Google Scholar 

  • Maturilli M, Herber A, König-Langlo G (2014) Surface radiation climatology for Ny-Ålesund, Svalbard (78.9 N), basic observations for trend detection. Theor Appl Climatol 120:331–339

    Article  Google Scholar 

  • McMahon KW, Ambrose WG Jr, Johnson BJ, Sun MY, Lopez GR, Clough LM, Carroll ML (2006) Benthic community response to ice algae and phytoplankton in Ny-Ålesund, Svalbard. Mar Ecol Prog Ser 310:1–14

    Article  Google Scholar 

  • Meire PM, Dereu JPJ, Van der Meer J, Develter DWG (1989) Aggregation of littoral macrobenthic species: some theoretical and practical considerations. Hydrobiologia 175:137–148

    Article  Google Scholar 

  • Milliken GA, Johnson DE (2009) Analysis of messy data volume 1: designed experiments, 2nd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  • Mincks SL, Smith CR, DeMaster DJ (2005) Persistence of labile organic matter and microbial biomass in Antarctic shelf sediments: evidence of a sediment food bank. Mar Ecol Prog Ser 300:3–19

    Article  CAS  Google Scholar 

  • Mincks SL, Smith CR, Jeffreys RM, Sumida PY (2008) Trophic structure on the West Antarctic Peninsula shelf: detritivory and benthic inertia revealed by δ 13 C and δ 15 N analysis. Deep Sea Res Part II Top Stud Oceanogr 55:2502–2514

    Article  CAS  Google Scholar 

  • Nicolaus M, Katlein C, Maslanik J, Hendricks S (2012) Changes in Arctic sea ice result in increasing light transmittance and absorption. Geophys Res Lett 39:L24501

    Article  Google Scholar 

  • Nielsen KJ, Navarrete SA (2004) Mesoscale regulation comes from the bottom-up: intertidal interactions between consumers and upwelling. Ecol Lett 7:31–41

    Article  Google Scholar 

  • Nilsson HC, Rosenberg R (2000) Succession in marine benthic habitats and fauna in response to oxygen deficiency: analysed by sediment profile-imaging and by grab samples. Mar Ecol Prog Ser 197:139–149

    Article  Google Scholar 

  • Norkko A, Rosenberg R, Thrush SF, Whitlatch RB (2006) Scale-and intensity-dependent disturbance determines the magnitude of opportunistic response. J Exp Mar Biol Ecol 330:195–207

    Article  Google Scholar 

  • Nowak CA (2012) Sukzession von Makrozoobenthosgemeinschaften arktischer Weichböden (Kongsfjorden, Spitzbergen) - ein in situ-Experiment. Bacheor Thesis, Carl von Ossietzky Universität Oldenburg

  • Nowak CA, Laudien J, Sahade RJ (2016) Counts and abundance of macrozoobenthic organisms settled in artificial soft sediment at Brandal, Kongsfjorden, Spitsbergen. doi:10.1594/PANGAEA.859583

  • Osman RW, Whitlatch RB (1995) The influence of resident adults on recruitment: a comparison to settlement. J Exp Mar Biol Ecol 190:169–198

    Article  Google Scholar 

  • Osman RW, Whitlatch RB, Malatesta RJ (1992) Potential role of micro-predators in determining recruitment into a marine community. Mar Ecol Prog Ser Oldendorf 83:35–43

    Article  Google Scholar 

  • Oug E (2001) Polychaetes in intertidal rocky and sedimentary habitats in the region of Tromsø, northern Norway. Sarsia 86:75–83

    Article  Google Scholar 

  • Pacheco AS, Laudien J, Thiel M, Oliva ME, Arntz WE (2010) Succession and seasonal variation in the development of subtidal macrobenthic soft-bottom communities off northern Chile. J Sea Res 64:180–189

    Article  Google Scholar 

  • Pacheco AS, Thiel M, Oliva ME, Riascos JM (2012) Effects of patch size and position above the substratum during early succession of subtidal soft-bottom communities. Helgol Mar Res 66:523–536

    Article  Google Scholar 

  • Pacheco AS, Uribe RA, Thiel M, Oliva ME, Riascos JM (2013) Dispersal of post-larval macrobenthos in subtidal sedimentary habitats: roles of vertical diel migration, water column, bedload transport and biological traits’ expression. J Sea Res 77:79–92

    Article  Google Scholar 

  • Peck LS, Brockington S, Vanhove S, Beghyn M (1999) Community recovery following catastrophic iceberg impacts in a soft-sediment shallow-water site at Signy Island, Antarctica. Mar Ecol Prog Ser 186:1–8

    Article  Google Scholar 

  • Peterson CH (1977) Competitive organization of the soft-bottom macrobenthic communities of southern California lagoons. Mar Biol 43:343–359

    Article  Google Scholar 

  • Petrowski S, Molis M, Bender A, Buschbaum C (2015a) Disturbance effects of kelp thalli on structure and diversity of a coastal Arctic marine soft-bottom assemblage. Polar Biol 1–10. doi:10.1007/s00300-015-1714-z

  • Petrowski S, Molis M, Schachtl K, Buschbaum C (2015b) Do bioturbation and consumption affect coastal Arctic marine soft-bottom communities? Polar Biol 1–13. doi:10.1007/s00300-015-1654-7

  • Platt HM, Warwick RM (1980) The significance of free-living nematodes to the littoral ecosystem. In: Price JH, Irvine DEG, Fanham WF (eds) The short environment, ecosystems. Academic Press, London, p 729

  • Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge, pp 1–537

    Book  Google Scholar 

  • Rhoads DC, Germano JD (1986) Interpreting long-term changes in benthic community structure: a new protocol. Hydrobiologia 142:291–308

    Article  Google Scholar 

  • Riordan TJJ, Lindsay SM (2002) Feeding responses to particle-bound cues by a deposit-feeding spionid polychaete, Dipolydora quadrilobata (Jacobi 1883). J Exp Mar Biol Ecol 277:79–95

    Article  Google Scholar 

  • Rosenberg R (1995) Benthic marine fauna structured by hydrodynamic processes and food availability. Neth J Sea Res 34:303–317

    Article  Google Scholar 

  • Rosenberg R (2001) Marine benthic faunal successional stages and related sedimentary activity. Sci Mar 65:107–119

    Article  Google Scholar 

  • Rumohr H, Arntz WE (1982) The “Benthosgarten”- A new approach for the study of soft bottom communities. Meeresforschung 29:225–238

    Google Scholar 

  • Sahade RJ, Stellfeldt A, Tatián M, Laudien J (2004) Macro-epibenthic communities and diversity of Arctic Kongsforden, Svalbard, in relation to depth and substrate. In: Wiencke C (ed) The coastal ecosystem of Kongsfjorden, Svalbard: Synopsis of biological research performed at the Koldewey Station in the years 1991–2003. Ber. zur Polar-und Meeresforsch, Bremerhaven, pp 103–111

    Google Scholar 

  • Sanderson TJ (1988) Ice mechanics and risks to offshore structures. Kluwer Acad Publ Norwell, Massachusetts

    Google Scholar 

  • Santos SL (1980) Response of soft-bottom benthos to annual catastrophic disturbance in a south Florida estuary. Mar Ecol Prog Ser 3:347–355

    Article  Google Scholar 

  • Sarnthein M, Richter W (1974) Submarine experiments on benthic colonization of sediments in the western Baltic Sea. I. Technical layout. Mar Biol 28:159–164

    Article  Google Scholar 

  • Schratzberger M, Bolam SG, Whomersley P, Warr K, Rees H (2004) Development of a meiobenthic nematode community following the intertidal placement of various types of sediment. J Exp Mar Biol Ecol 303:79–96

    Article  Google Scholar 

  • Shanks AL, Brink L (2005) Upwelling, downwelling, and cross-shelf transport of bivalve larvae: test of a hypothesis. Mar Ecol Prog Ser 302:1–12

    Article  Google Scholar 

  • Smale DA (2007) Ice disturbance intensity structures benthic communities in nearshore Antarctic waters. Mar Ecol Prog Ser 349:89–102

    Article  Google Scholar 

  • Smale DA (2008) Continuous benthic community change along a depth gradient in Antarctic shallows: evidence of patchiness but not zonation. Polar Biol 31:189–198

    Article  Google Scholar 

  • Smale DA, Barnes DK (2008) Likely responses of the Antarctic benthos to climate-related changes in physical disturbance during the 21st century, based primarily on evidence from the West Antarctic Peninsula region. Ecography 31:289–305

    Article  Google Scholar 

  • Smale DA, Barnes DK, Fraser KP (2007) The influence of depth, site exposure and season on the intensity of iceberg scouring in nearshore Antarctic waters. Polar Biol 30:769–779

    Article  Google Scholar 

  • Sousa WP (1984) The role of disturbance in natural communities. Annu Rev Ecol Syst 15:353–391

    Article  Google Scholar 

  • Spagnolo A, Cuicchi C, Punzo E, Santelli A, Scarcella G, Fabi G (2014) Patterns of colonization and succession of benthic assemblages in two artificial substrates. J Sea Res 88:78–86

    Article  Google Scholar 

  • Stanwell-Smith D, Barnes DK (1997) Benthic community development in Antarctica: recruitment and growth on settlement panels at Signy Island. J Exp Mar Biol Ecol 212:61–79

    Article  Google Scholar 

  • Svendsen H, Beszczynska-Møller A, Hagen JO, Lefauconnier B, Tverberg V, Gerland S, Ørbøk JB, Bischof K, Papucci C, Zajączkowski M (2002) The physical environment of Kongsfjorden-Krossfjorden, an Arctic fjord system in Svalbard. Polar Res 21:133–166

    Article  Google Scholar 

  • Thistle D (1981) Natural physical disturbances and communities of marine soft bottoms. Mar Ecol Prog Ser 6:223–228

    Article  Google Scholar 

  • Thistle D, Weatherly GL, Wonnacott A, Ertman SC (1995) Suspension by winter storms has an energetic cost for adult male benthic harpacticoid copepods at a shelf site. Mar Ecol Prog Ser 125:77–86

    Article  Google Scholar 

  • Thomas DN, Dieckmann GS (2010) Sea ice, 2nd edn. Wiley-Blackwell, Oxford

    Google Scholar 

  • Underwood AJ, Chapman MG (2006) Early development of subtidal macrofaunal assemblages: relationships to period and timing of colonization. J Exp Mar Biol Ecol 330:221–233

    Article  Google Scholar 

  • Valdivia N, Heidemann A, Thiel M, Molis M, Wahl M (2005) Effects of disturbance on the diversity of hard-bottom macrobenthic communities on the coast of Chile. Mar Ecol Prog Ser 299:45–54

    Article  Google Scholar 

  • van Colen C, Montserrat F, Vincx M, Herman PMJ, Ysebaert T, Degraer S (2008) Macrobenthic recovery from hypoxia in an estuarine tidal mudflat. Mar Ecol Prog Ser 372:31–42

    Article  CAS  Google Scholar 

  • Veit-Köhler G, Laudien J, Knott J, Velez J, Sahade RJ (2008) Meiobenthic colonisation of soft sediments in arctic glacial Kongsfjorden (Svalbard). J Exp Mar Biol Ecol 363:58–65

    Article  Google Scholar 

  • Vincx M, Heip CHR (1987) The use of meiobenthos in pollution monitoring studies: a review. ICES Tech Mar Environ Sci 1166:1–18

    Google Scholar 

  • Wassmann P, Reigstad M (2011) Future Arctic Ocean seasonal ice zones and implications for pelagic-benthic coupling. Oceanography 24:220–231

    Article  Google Scholar 

  • Wei T, Ding M, Wu B, Lu C, Wang S (2015) Variations in temperature‐related extreme events (1975–2014) in Ny‐Ålesund, Svalbard. Atmos Sci Lett 17:102–108

  • Węsławski JM, Kwaśniewski S, Wiktor J, Zajączkowski M (1993) Observations on the fast ice biota in the fjords of Spitsbergen. Pol Polar Res 14:331–343

    Google Scholar 

  • Węsławski JM, Wiktor J, Kotwicki L (2010) Increase in biodiversity in the arctic rocky littoral, Sorkappland, Svalbard, after 20 years of climate warming. Mar Biodivers 40:123–130

    Article  Google Scholar 

  • Węsławski JM, Kendall MA, Włodarska-Kowalczuk M, Iken K, Kędra M, Legezynska J, Sejr MK (2011) Climate change effects on Arctic fjord and coastal macrobenthic diversity-observations and predictions. Mar Biodivers 41:71–85

    Article  Google Scholar 

  • Whittington RJ, Forsberg CF, Dowdeswell JA (1997) Seismic and side-scan sonar investigations of recent sedimentation in an ice-proximal glacimarine setting, Kongsfjorden, north-west Spitsbergen. In: Davies TA (ed) Glaciated Continental Margins–an atlas of acoustic images. Chapman and Hall, London, pp 175–178

    Chapter  Google Scholar 

  • Wilson WH (1990) Competition and predation in marine soft-sediment communities. Annu Rev Ecol Syst 21:221–241

    Article  Google Scholar 

  • Włodarska-Kowalczuk M, Pearson TH (2004) Soft-bottom macrobenthic faunal associations and factors affecting species distributions in an Arctic glacial fjord (Kongsfjord, Spitsbergen). Polar Biol 27:155–167

    Article  Google Scholar 

  • Włodarska-Kowalczuk M, Węsławski JM, Kotwicki L (1998) Spitsbergen glacial bays macrobenthos—a comparative study. Polar Biol 20:66–73

    Article  Google Scholar 

  • Włodarska-Kowalczuk M, Pearson TH, Kendall MA (2005) Benthic response to chronic natural physical disturbance by glacial sedimentation in an Arctic fjord. Mar Ecol Prog Ser 303:31–41

    Article  Google Scholar 

  • Zajac RN, Whitlatch RB (1982) Responses of estuarine infauna to disturbance. I. Spatial and temporal variation of initial recolonization. Mar Ecol Prog Ser 10:1–14

    Article  Google Scholar 

  • Zajac RN, Whitlatch RB, Thrush SF (1998) Recolonization and succession in soft-sediment infaunal communities: the spatial scale of controlling factors. Hydrobiologia 375:227–240

    Article  Google Scholar 

Download references

Acknowledgments

This research was performed at the Ny-Ålesund International Research and Monitoring Facility on Spitsbergen (Svalbard). There, the AWIPEV facility, provided by the Alfred-Wegener-Institute Helmholtz Centre for Polar and Marine Research (AWI) and the Institut polaire Français—Institut Paul Émile Victor (IPEV), was used. We would like to express our appreciation to the cold water adapted scientific diving group of the AWI for assistance during the installation and sampling of the experimental set-up, especially Tilman Alpermann, Michael Assmann, Saskia Brandt, Claudia Daniel, Marko Herrmann, Stephan Kremb, Uli Kunz, Robert Marc Lehmann, Nick Probst, Philipp Schubert, Max Schwanitz, Marcos Tatián, Gritta Veit-Köhler, Jose Velez and Hendrik Wessels. We are also very grateful to Anders Warén and Gritta Veit-Köhler who supported the identification of molluscs. Moreover, we would like to thank Ramona Brunner, Ruth Alheit and Georgia Mc Dowell who greatly helped by proof-reading the manuscript, as well as Michael Greenacre and four anonymous reviewers for their constructive suggestions on an earlier version of this manuscript. Finally, we are grateful for financial support by the German Academic Exchange Service (DAAD) to cover travel costs for research students.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Laudien.

Additional information

This article belongs to the special issue on the “Kongsfjorden ecosystem—new views after more than a decade of research”, coordinated by Christian Wiencke and Haakon Hop.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nowak, C.A., Laudien, J. & J. Sahade, R. Rising temperatures and sea-ice-free winters affect the succession of Arctic macrozoobenthic soft-sediment communities (Kongsfjorden, Svalbard). Polar Biol 39, 2097–2113 (2016). https://doi.org/10.1007/s00300-016-1995-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-016-1995-x

Keywords

Navigation